Adaptive Sampling of Pareto Frontiers with Binary Constraints using Regression and Classification

1. Problem description

3. Implementation

PYTHON CODE AVAILABLE ONLINE: github.com/RaoulHeese/adasamp-pareto

- Allows a sequential or a parallelized evaluation of the simulation.
- Handles regression and classification models with scikit-learn structure.
- Limited to probabilistic models with normal distributions (explicit formulas).
- Expected hypervolume improvement with novel *ellipsoid truncation method*.

RAOUL HEESE, MICHAEL BORTZ raoul.heese@itwm.fraunhofer.de arxiv.org/abs/2008.12005

2. Proposed method

BASED ON BAYESIAN OPTIMIZATION (BO):

- BO is a sequential design strategy for global optimization.
- In each iteration, multiple design points x_1, x_2, \ldots are proposed.
- The points are chosen based on the estimated global maximum of a so-called acquisition function AF, which is based on surrogate models for S.
- S can be evaluated simultaneously for all proposed design points.
- The resulting data is used to refine the surrogate models.

ACQUISITION FUNCTION:

- $\operatorname{AF}(\mathbf{x}) \equiv \frac{w_{\text{opt}}}{|\mathbf{w}|_{1}} U_{\text{opt}}(\mathbf{x}, \mathbf{\hat{y}}, f) + \frac{w_{\text{con}}}{|\mathbf{w}|_{1}} U_{\text{con}}(\mathbf{x}, \mathbf{\hat{y}}, f) + \frac{w_{\text{exp}}}{|\mathbf{w}|_{1}} U_{\text{exp}}(\mathbf{x}, \mathbf{\hat{y}})$
- **3** components with user-defined weights $\mathbf{w} \equiv (w_{\text{opt}}, w_{\text{con}}, w_{\text{exp}})$:
 - \blacksquare U_{opt} : Expected improvement of the Pareto frontier.
 - \blacksquare $U_{\rm con}$: Expected improvement of the classification model.
 - \blacksquare U_{exp} : Expected exploration benefit.
- The weighted sum evaluates the *expected utility* of a design point as a customizable trade-off between exploitation and exploration.
- Based on two surrogate models for S:
 - Regression model $\hat{\mathbf{y}} \approx \mathbf{y}$
 - Classification model $\hat{f} \approx f$

ALGORITHM:

function OPTIMIZE(N_{seq}) > propose N_{seq} design points per iteration $\mathbf{D} \leftarrow \mathsf{INITIALCALCULATION}(\mathcal{X}, \mathbf{S})$ Random exploration while not STOP(D) do Evaluate stopping criterion $\mathbf{M} \leftarrow \mathsf{UpdateModels}(\mathbf{D})$ ▷ Train/refine surrogates $\mathrm{D}' \leftarrow \mathrm{D}$ $\nu \leftarrow 0$ while $\nu < N_{
m seq}$ do Propose single point $\mathbf{x} \leftarrow \mathsf{SUGGESTION}(\boldsymbol{\mathcal{X}}, \mathbf{M}, \mathbf{D'})$ Evaluate surrogate $\hat{\mathbf{y}}, f \leftarrow \mathsf{PREDICTION}(\mathbf{M}, \mathbf{x})$ $\mathbf{D'} \leftarrow \mathbf{D'} \cup \{(\mathbf{x}, \mathbf{\hat{y}}, f)\}$ 10. $\nu \leftarrow \nu + 1$ end while Evaluate simulation $\mathbf{D}_{new} \leftarrow \mathsf{CALCULATION}(\mathbf{S}, \mathbf{x}(\mathbf{D'}))$ $\mathbf{D} \leftarrow \mathbf{D} \cup \mathbf{D}_{\mathrm{new}}$ Update data base end while return PARETO(D) Pareto optimal subset of acquired data 17: end function

4. Benchmark

SETUP:

We study 6 different benchmark problems (5 of which are from the literature).

The feasibility f is determined from the mutual fulfillment of m problem-specific constraints $c_1(\mathbf{x}), \ldots, c_m(\mathbf{x})$:

feasible if $c_i(\mathbf{x}) \le 0 \forall i = 1, \dots, m$ $f(\mathbf{x}) =$ infeasible else

To increase reproducibility, we select an initial sampling region in the design space.

For each problem, we perform 50 independent optimization runs.

As surrogate models we use GPR/BRR for $\hat{\mathbf{y}}$ and kSVM for \hat{f} .

Our algorithm adaptive- N_{seq} competes against nsgaii.

TEST PROBLEMS:

5. Results

CIR SAMPLING OF \mathcal{X} :

SUMMARIZED RESULTS:

Problem	Total number of evaluations $N^{\delta}(ext{adaptive-1},\delta v)$				Break-even simulation times $ au(ext{adaptive-1}, ext{nsgaii}, \delta v)$			
name	$\delta v = 0.80$	$\delta v = 0.85$	$\delta v = 0.90$	$\delta v = 0.95$	$\delta v = 0.80$	$\delta v = 0.85$	$\delta v = 0.90$	$\delta v = 0.95$
BNH	16.36 ± 2.54	18.82 ± 2.56	25.14 ± 4.89	38.30 ± 5.40	$(0.13 \pm 0.08)\mathrm{s}$	$(0.16 \pm 0.08)\mathrm{s}$	$(0.22 \pm 0.10)\mathrm{s}$	$(0.30 \pm 0.09)\mathrm{s}$
SRN	28.77 ± 23.26	31.77 ± 23.08	38.86 ± 22.54	62.40 ± 15.71	$(0.26 \pm 0.20)\mathrm{s}$	$(0.25 \pm 0.16)\mathrm{s}$	$(0.24 \pm 0.12)\mathrm{s}$	$(0.34 \pm 0.13)\mathrm{s}$
OSY	334.92 ± 121.41	556.11 ± 172.00	710.00 ± 112.00	> 750	$(1.49 \pm 1.34)\mathrm{s}$	$(2.91 \pm 2.37)\mathrm{s}$	$(2.83 \pm 1.56)\mathrm{s}$	—
CEX	57.82 ± 41.50	68.31 ± 42.04	84.81 ± 37.48	135.87 ± 37.88	$(0.65 \pm 0.76)\mathrm{s}$	$(0.52 \pm 0.52)\mathrm{s}$	$(0.45 \pm 0.33)\mathrm{s}$	$(0.50 \pm 0.28)\mathrm{s}$
FFF	46.29 ± 24.81	53.87 ± 27.50	70.53 ± 26.49	117.13 ± 20.78	$(1.09 \pm 1.17)\mathrm{s}$	$(0.97 \pm 1.19)\mathrm{s}$	$(1.00 \pm 1.02)\mathrm{s}$	$(2.41 \pm 1.05)\mathrm{s}$
CIR	74.04 ± 13.49	86.20 ± 14.22	108.09 ± 17.41	182.45 ± 15.37	$(0.46 \pm 0.23)\mathrm{s}$	$(0.44 \pm 0.21)\mathrm{s}$	$(0.42 \pm 0.22)\mathrm{s}$	$(0.48 \pm 0.16)\mathrm{s}$

 \blacksquare $N^{0}(adaptive-1, \delta v)$: Number of evaluations to reach a certain relative total dominated volume $\Delta V(alg) \ge \delta v \in [0, 1]$.

 \mathbf{I} (adaptive-1, nsgaii, δv): Break-even simulation times $T_{sim} > \tau$, for which adaptive-1 runs faster than nsgaii to reach a certain relative total dominated volume δv .

6. Summary

- We propose a **novel adaptive optimization algorithm** on the foundation of Bayes optimization, which allows us to solve black-box multi-objective optimization problems with black-box binary constraints.
- The **weight-based acquisition function** is intuitively understandable and can be tuned to the demands of the problems at hand.
- To speed up calculation time of the expected hypervolume improvement, we propose an ellipsoid truncation method.
- A **benchmark** has shown that our approach can compete with an evolutionary algorithm on a set of test problems with respect to the number of iterations and the calculation time.

NUMBER OF EVALUATIONS:

$$\Delta V(\text{alg}) \equiv \frac{V(\mathbf{D}(\text{alg}), \mathbf{y}_{ref})}{V_{true}(\mathbf{y}_{ref})} \in [0, 1].$$

CIR RUNTIME:

im simulations can be evaluated in parallel during a constant runtime T_{sim} and the pure runtime of the algorithm is T(alg), then the effective runtime after $N_{\rm iter}$ iterations reads

$$T_{\rm eff}({\rm alg}) \equiv T_{\rm sim} \left[\frac{N_{
m seq}}{N_{
m sim}} \right] N_{
m iter} + T({
m alg}).$$

We iterate over different artificially chosen values of $N_{
m sim}$ and $T_{
m sim}$ for the benchmark.

7. Outlook

- Consider **noisy/uncertain simulations**, which would require an appropriate modification of the surrogate models.
- Consider integer (and mixed-integer) design variables which would allow us to solve integer programming problems and mixed-integer programming problems.
- Incorporate additional non-binary constraints.
- Use analytically calculated gradients, which could greatly improve the performance of the acquisition function optimization.
- Apply the method to more complex problems and real-world **applications**.