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TASK: SOLVE AN OPTIMIZATION PROBLEM!

Presume a black-box computer simulation S(x) with

� real design variables x ∈ X of arbitrary dimensions,

� multiple real black-box objectives y ∈ Y and

� a binary black-box feasibility f .
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BLACK-BOX OPTIMIZATION PROBLEM:

minimize
x

y ≡ y(x) ≡ (y1(x), . . . , yn(x))

subject to f ≡ f (x) = feasible

where x ∈ X ⊆ Rd (design variables)
y ∈ Y ⊆ Rn (objectives)
f ∈ F ≡ {feasible, infeasible}
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FORMAL SOLUTION:
Set of Pareto optimal objectives

P(X ,y(x), f (x)) ≡ {y ∈ Y | ∃x ∈ X : y = y(x) ∧ f (x) = feasible∧
y′ � y ∀x′ ∈ X \ {x} : y′ = y(x′) ∧ f (x′) = feasible }

with y � y′ ⇔ yi ≤ y′i ∀ i = 1, . . . , n ∧ y 6= y′ (y ∈ Y dominates y′ ∈ Y).

GOAL:
Find an approximate solution

P̂(X ,y(x), f (x)) ≈ P(X ,y(x), f (x))

as accurate as possible with as few evaluations

S(x) ≡ (y(x), f (x))

as possible.
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BASED ON BAYESIAN OPTIMIZATION (BO):

� BO is a sequential design strategy for global optimization.

� In each iteration, multiple design points x1, x2, . . . are proposed.

� The points are chosen based on the estimated global maximum of
a so-called acquisition function AF, which is based on surrogate
models for S.

� S can be evaluated simultaneously for all proposed design points.

� The resulting data is used to refine the surrogate models.

x1 = argmaxAF x2 = argmaxAF . . .

S(x1)
S(x2)

...
train models new

iteration

ACQUISITION FUNCTION:

AF(x) ≡ wopt

|w|1
Uopt(x, ŷ, f ) +

wcon

|w|1
Ucon(x, ŷ, f ) +

wexp

|w|1
Uexp(x, ŷ)

� 3 components with user-defined weights w ≡ (wopt, wcon, wexp):

� Uopt: Expected improvement of the Pareto frontier.

� Ucon: Expected improvement of the classification model.

� Uexp: Expected exploration benefit.

� The weighted sum evaluates the expected utility of a design point
as a customizable trade-off between exploitation and exploration.

� Based on two surrogate models for S:

� Regression model ŷ ≈ y

� Classification model f̂ ≈ f

ALGORITHM:

1: function OPTIMIZE(Nseq) . propose Nseq design points per iteration
2: D← INITIALCALCULATION(X ,S) . Random exploration
3: while not STOP(D) do . Evaluate stopping criterion
4: M← UPDATEMODELS(D) . Train/refine surrogates
5: D′← D
6: ν ← 0
7: while ν < Nseq do
8: x← SUGGESTION(X ,M,D′) . Propose single point
9: ŷ, f̂ ← PREDICTION(M,x) . Evaluate surrogate

10: D′← D′ ∪ {(x, ŷ, f̂ )}
11: ν ← ν + 1
12: end while
13: Dnew ← CALCULATION(S,x(D′)) . Evaluate simulation
14: D← D ∪Dnew . Update data base
15: end while
16: return PARETO(D) . Pareto optimal subset of acquired data
17: end function

PYTHON CODE AVAILABLE ONLINE: github.com/RaoulHeese/adasamp-pareto

� Allows a sequential or a parallelized evaluation of the simulation.

� Handles regression and classification models with scikit-learn structure.

� Limited to probabilistic models with normal distributions (explicit formulas).

� Expected hypervolume improvement with novel ellipsoid truncation method.
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SETUP:

� We study 6 different benchmark problems
(5 of which are from the literature).

� The feasibility f is determined from the mu-
tual fulfillment of m problem-specific con-
straints c1(x), . . . , cm(x):

f (x) =

{
feasible if ci(x) ≤ 0∀ i = 1, . . . ,m

infeasible else

� To increase reproducibility, we select an ini-
tial sampling region in the design space.

� For each problem, we perform 50 indepen-
dent optimization runs.

� As surrogate models we use GPR/BRR for
ŷ and kSVM for f̂ .

� Our algorithm adaptive-Nseq competes
against nsgaii.
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Problem
name dim(X ) = d dim(Y) = n

m
constraints

BNH 2 2 2

SRN 2 2 2

OSY 6 2 6

CEX 2 2 4

FFF 2 2 3

CIR 2 2 1

CIR SAMPLING OF X :

adaptive-1 nsgaii

20 20

35 35

60 60

160 160

NUMBER OF EVALUATIONS:

0 50 100 1500

0.2

0.4

0.6

0.8

1

∆
V
(a

lg
)

0 50 100 150

0 500 1,0000

0.2

0.4

0.6

0.8

1

∆
V
(a

lg
)

0 100 200

0 1000

0.2

0.4

0.6

0.8

1

N(alg)

∆
V
(a

lg
)

0 100 200
N(alg)

BNH SRN

OSY CEX

FFF CIR

nsgaii
adaptive-1
adaptive-5

� The relative total dominated vol-
ume with respect to a reference
point yref ∈ Y is defined as

∆V (alg) ≡ V (D(alg),yref)

Vtrue(yref)
∈ [0, 1].

CIR RUNTIME:
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Nsim = 1, Tsim = 1.0 s Nsim = 1, Tsim = 10.0 s

Nsim = 1, Tsim = 5.0 s Nsim = 5, Tsim = 10.0 s

� If Nsim simulations can be evaluated in
parallel during a constant runtime Tsim
and the pure runtime of the algorithm is
T (alg), then the effective runtime after
Niter iterations reads

Teff(alg) ≡ Tsim

⌈
Nseq

Nsim

⌉
Niter + T (alg).

� We iterate over different artificially cho-
sen values of Nsim and Tsim for the
benchmark.

SUMMARIZED RESULTS:

Problem
name

Total number of evaluations Nδ(adaptive-1, δv) Break-even simulation times τ (adaptive-1, nsgaii, δv)
δv = 0.80 δv = 0.85 δv = 0.90 δv = 0.95 δv = 0.80 δv = 0.85 δv = 0.90 δv = 0.95

BNH 16.36± 2.54 18.82± 2.56 25.14± 4.89 38.30± 5.40 (0.13± 0.08) s (0.16± 0.08) s (0.22± 0.10) s (0.30± 0.09) s
SRN 28.77± 23.26 31.77± 23.08 38.86± 22.54 62.40± 15.71 (0.26± 0.20) s (0.25± 0.16) s (0.24± 0.12) s (0.34± 0.13) s
OSY 334.92± 121.41 556.11± 172.00 710.00± 112.00 > 750 (1.49± 1.34) s (2.91± 2.37) s (2.83± 1.56) s –
CEX 57.82± 41.50 68.31± 42.04 84.81± 37.48 135.87± 37.88 (0.65± 0.76) s (0.52± 0.52) s (0.45± 0.33) s (0.50± 0.28) s
FFF 46.29± 24.81 53.87± 27.50 70.53± 26.49 117.13± 20.78 (1.09± 1.17) s (0.97± 1.19) s (1.00± 1.02) s (2.41± 1.05) s
CIR 74.04± 13.49 86.20± 14.22 108.09± 17.41 182.45± 15.37 (0.46± 0.23) s (0.44± 0.21) s (0.42± 0.22) s (0.48± 0.16) s

�Nδ(adaptive-1, δv): Number of evaluations to reach a certain relative total dominated volume ∆V (alg) ≥ δv ∈ [0, 1].

� τ (adaptive-1, nsgaii, δv): Break-even simulation times Tsim > τ , for which adaptive-1 runs faster than nsgaii to reach a
certain relative total dominated volume δv.

� We propose a novel adaptive optimization algo-
rithm on the foundation of Bayes optimization, which
allows us to solve black-box multi-objective optimiza-
tion problems with black-box binary constraints.

� The weight-based acquisition function is intuitively
understandable and can be tuned to the demands of
the problems at hand.

� To speed up calculation time of the expected hyper-
volume improvement, we propose an ellipsoid trun-
cation method.

� A benchmark has shown that our approach can com-
pete with an evolutionary algorithm on a set of test
problems with respect to the number of iterations and
the calculation time.

� Consider noisy/uncertain simulations, which would
require an appropriate modification of the surrogate
models.

� Consider integer (and mixed-integer) design vari-
ables which would allow us to solve integer program-
ming problems and mixed-integer programming prob-
lems.

� Incorporate additional non-binary constraints.

� Use analytically calculated gradients, which could
greatly improve the performance of the acquisition
function optimization.

� Apply the method to more complex problems and
real-world applications.


