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Abstract

e [he task of Generalized Zero-Shot Learning (GZSL)
for hand gesture recognition aims to recognize ges-
tures from both seen and unseen classes by lever-
aging semantic representations.

e We propose an end-to-end prototype-based GZSL
framework for hand gesture recognition which con-
sists of two branches to tackle this challenge.

e We establish a hand gesture dataset that specii-
lcally targets this GZSL task, and comprehensive
experiments on this dataset demonstrate the effec-
tiveness of our proposed approach on recognizing
both seen and unseen gestures.

Motivation

e Most existing works can only recognize a limited
number of categories that have been seen during
tratntng.

e G/SL provides a solution for tackling the above
challenges. However, GZSL approaches for dynam-
lc hand gesture recognition are less explored.

e [ he recognition accuracy of existing zero-shot ges-
ture recognition methods is not satisfactory enough.

Method

e Overview of the Proposed Framework
I

— The Prototype-Based Detector (PBD) learns a
detector that determines whether an input sample
belongs to a seen or unseen category, and mean-
while produces feature representations of unseen
data.

— The zero-shot label predictor takes these features
as input, and outputs predictions of samples from
unseen classes through a learned mapping mech-
anism from feature to semantic space.

— These two branches are jointly trained in an end-
to-end manner.
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Fig. 1: Overview of the proposed framework

e Prototype-Based Detector (PBD)

— Using a multi-layer Bidirectional Long Short-Term
Memory Networks (BLSTM) to extract temporal
features

— Learning a fixed number of prototypes for each
class

— The parameters of BLSTM and the prototypes are
jointly trained through the distance-based cross
entropy (DCE) loss Lyce and prototype loss L;:

—YC/iS(IJ/ch/(X)"n Uf)

K
e
Lace ((x,y) |6, M) = —log )  — (1)

1 )kt ;<1 e Ydis(Ppbd(x).mi)’
= =

wujinting20160@ia.ac.cn

2
Lot ((x, y) |0, M) = ||pppa (x) —m;]|; (2)
e Zero-Shot Label Predictor

— Using a multi-layer Semantic Auto-Encoder (SAE)
to predict the unseen gestures

— The loss function of SAE consists of an attribute
loss L.+t and a reconstruction loss L,..:
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e End-to-End Learning Objective

— The above two branches can be jointly trained in
an end-to-end manner.

— The joint learning objective of our end-to-end
framework can be formulated as:
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e Label Prediction

— The model distinguishes the seen and unseen cat-
egories by comparing the minimum distance d,, (x)
in the prototype space with the thresholds T h (x).

— Seen cateqories: the result given by the PBD
module € (x)

— Unseen categories: the result given by the SAE
module g, (x)
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Dataset

e [he dataset contains 10 seen gestures and 9 un-
seen gestures which are captured by a Leap Motion
Controller.

e [he information such as hand direction, palm center
and skeletal joint positions on a single right hand
is recorded

e We design 11 attributes including hand movement
and finger bending states.
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Fig. 2: Hand gesture categories
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Fig. 3: Binary heat map of the categories and attributes

Experimental Results

e Evaluation Metrics

— The top-1 accuracy of seen classes and unseen
classes: Acc. and Acc,

— Harmonic mean: H

e State-of-the-art Comparisons

— Zero-shot gesture recognition method: ESZSL |2]
— (Generalized zero-shot object recognition method:

CADA-VAE (3] and f~-CLSWGAN [4]

Methods Acc. @ Accy, H
ESZSL |2] /7.81% 13.89%  23.57%
CADA-VAE [3] 80.00% 53.89% 64.40%
f-CLSWGAN [4]]79.79%  55.00% 65.08%
Our Framework | 89.06% 58.33% 70.49%

e Ablation Analysis

— The traditional SAE [1] without the prototype-
based detector

— The framework with a fixed threshold for all seen
categorties

— The framework where two branches are trained
separately

Methods Acc. | Accy H | Test Time
SAE [1] 91.88% 15.00%  25.79%  0.023s
Fixed Threshold | 84.09% 50.56% 063.31% 0.022s
PBD+SAE 90.63% 57.22% 70.15%  0.0206s
Our Framework™ 89.06% 58.33% 70.49% 0.022s

e We propose a prototype-based GZSL framework for
hand gesture recognition. Two branches of our
framework are introduced: a prototype-based de-
tector and a zero-shot label predictor.

e [ he experimental results demonstrate that the pro-
posed framework achieves a significant improve-
ment over the state-of-the-art methods.

e In future work, we aim to extend this framework to
a larger scale of gesture data in order to better
support human-robot interaction in the real world.
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