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Abstract
•The task of Generalized Zero-Shot Learning (GZSL)for hand gesture recognition aims to recognize ges-tures from both seen and unseen classes by lever-aging semantic representations.
•We propose an end-to-end prototype-based GZSLframework for hand gesture recognition which con-sists of two branches to tackle this challenge.
•We establish a hand gesture dataset that specif-ically targets this GZSL task, and comprehensiveexperiments on this dataset demonstrate the effec-tiveness of our proposed approach on recognizingboth seen and unseen gestures.
Motivation
•Most existing works can only recognize a limitednumber of categories that have been seen duringtraining.
•GZSL provides a solution for tackling the abovechallenges. However, GZSL approaches for dynam-ic hand gesture recognition are less explored.
•The recognition accuracy of existing zero-shot ges-ture recognition methods is not satisfactory enough.
Method
•Overview of the Proposed Framework
→The Prototype-Based Detector (PBD) learns adetector that determines whether an input samplebelongs to a seen or unseen category, and mean-while produces feature representations of unseendata.
→The zero-shot label predictor takes these featuresas input, and outputs predictions of samples fromunseen classes through a learned mapping mech-anism from feature to semantic space.
→These two branches are jointly trained in an end-to-end manner.
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Fig. 1: Overview of the proposed framework
•Prototype-Based Detector (PBD)
→Using a multi-layer Bidirectional Long Short-TermMemory Networks (BLSTM) to extract temporalfeatures
→ Learning a fixed number of prototypes for eachclass
→The parameters of BLSTM and the prototypes arejointly trained through the distance-based crossentropy (DCE) loss Ldce and prototype loss Lpl:

Ldce ((x, y) |θ,M ) = − log K∑
j=1

e−γdis(ppbd(x),myj)∑C
k=1∑K

l=1 e−γdis(ppbd(x),mkl), (1)

Lpl ((x, y) |θ,M ) = ∥∥ppbd (x)−myj∥∥22 . (2)
•Zero-Shot Label Predictor
→Using a multi-layer Semantic Auto-Encoder (SAE)to predict the unseen gestures
→The loss function of SAE consists of an attributeloss Lattr and a reconstruction loss Lres:

Lattr ((x, zs) |θ,φ) = ∥∥z − zs∥∥22 , (3)
Lres ((x, zs) |θ,φ) = ∥∥v − vres∥∥22 . (4)

•End-to-End Learning Objective
→The above two branches can be jointly trained inan end-to-end manner.
→The joint learning objective of our end-to-endframework can be formulated as:
L ((x, y, zs) |θ,M,φ) = Ldce+λ1Lpl+λ2Lattr+λ3Lres.(5)

• Label Prediction
→The model distinguishes the seen and unseen cat-egories by comparing the minimum distance dm (x)in the prototype space with the thresholds Th (x).
→Seen categories: the result given by the PBDmodule ε (x)
→Unseen categories: the result given by the SAEmodule εu (x)

dm (x) = Cmin
i=1
(

Kmin
j=1
∥∥ppbd (x)−mij∥∥22

)
, (6)

label (x) = { ε (x) , dm (x) ≤ Th (x)
εu (x) , dm (x) > Th (x). (7)

Dataset
•The dataset contains 16 seen gestures and 9 un-seen gestures which are captured by a Leap MotionController.
•The information such as hand direction, palm centerand skeletal joint positions on a single right handis recorded
•We design 11 attributes including hand movementand finger bending states.
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Fig. 2: Hand gesture categories

Fig. 3: Binary heat map of the categories and attributes

Experimental Results
•Evaluation Metrics
→The top-1 accuracy of seen classes and unseenclasses: Accs and Accu
→Harmonic mean: H
•State-of-the-art Comparisons
→Zero-shot gesture recognition method: ESZSL [2]
→Generalized zero-shot object recognition method:CADA-VAE [3] and f-CLSWGAN [4]Methods Accs Accu HESZSL [2] 77.81% 13.89% 23.57%CADA-VAE [3] 80.00% 53.89% 64.40%f-CLSWGAN [4] 79.79% 55.00% 65.08%Our Framework 89.06% 58.33% 70.49%
•Ablation Analysis
→The traditional SAE [1] without the prototype-based detector
→The framework with a fixed threshold for all seencategories
→The framework where two branches are trainedseparatelyMethods Accs Accu H Test TimeSAE [1] 91.88% 15.00% 25.79% 0.023sFixed Threshold 84.69% 50.56% 63.31% 0.022sPBD+SAE 90.63% 57.22% 70.15% 0.026sOur Framework* 89.06% 58.33% 70.49% 0.022s

Conclusion
•We propose a prototype-based GZSL framework forhand gesture recognition. Two branches of ourframework are introduced: a prototype-based de-tector and a zero-shot label predictor.
•The experimental results demonstrate that the pro-posed framework achieves a significant improve-ment over the state-of-the-art methods.
• In future work, we aim to extend this framework toa larger scale of gesture data in order to bettersupport human-robot interaction in the real world.
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