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MOTIVATION ARCHITECTURE

1. Modern datasets often contains multiple unlabelled modes

2. Gaussian Mixture Model modes such datasets
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3. Important statistics can be retrieved, e.g., soft clustering membership, >©
weights of each component €; Zi_N
4. However, complex and high dimensional data, such as images, does not 21, 22,.., 2K

form mixtures naturally in their raw forms
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RESULTS

. Performance on highly imbalanced dataset
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Low-dimensional data clustering High-dimensional data clustering

1. Transform the data x into its latent representation z deterministically ' Gussian ixture
Vanilla GAN
: : : GAN w/o PCM
2. Model z with Gaussian Mixture
A natural choice is variational auto-encoder, however, VAEs often lead to ) Linear interpolation over 3 modes
blur images O AAAAAADAAN
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> Generative adversarial networks AAAad200A0
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> Posterior consistency module (PCM) that maps x to z 0 Aa0RAAA
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POSTERIOR CONSISTENCY MODULE 200AAA
1. Returns softmax outputs w = (wy, -+, W .
P e k) . Image quality
2. Feature encoding is shared with the discriminator
3- Makes 2 Comparisons number of parameters  Inception Score T  FID score |
.+ p(k|%,0) & p(k|x, 6) Proposed (encoding shared) 8,794,835 1368 £ 01596 2059776 4 79587
GM-GAN 8,467,145 2.6770 £0.1079  239.3936 £+ 6.7672
~ Vanilla GAN . 366, 14 2.4882 + 0.1 247.0610 + 7.2361
. p(k x,Q)&p(kz,9)= G 8,366, 145 88 0.1065
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4. Loss functions: CONCLUSIONS
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L IE{Zl"’N(.ul»Zl);”‘;ZK"’N(.“K:ZK)}[K 2i=11((k|z, 0), Cpem (X7))] 1. The latent space of GAN is modelled by Gaussian mixture
. X K 0 N0z
L5 = Exivpageal2ik=11(Cpem (X)) Cpep (X))] 2. a posterior consistency module was innovated to help the model to better
Px.y)(xYy) approximate GMM’s responsibility distribution
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