
▪ Time series classification datasets are often small

and this isn’t ideal for neural networks.

▪ Data augmentation is a common method to 

increase generalization.

▪ Common time series data augmentation methods 

include: random transformations, generative 

models, pattern mixing, and signal decomposition 

methods.
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▪ We proposed a new data augmentation method 

for time series called guided warping. Guided 

warping warps the elements of one time series to 

the steps of another time series using Dynamic 

Time Warping (DTW).

▪ We demonstrated that the use of a discriminator 

can improve the performance of guided warping 

by selecting the most discriminate teacher.

▪ We evaluated the proposed method on all 88 

datasets from the 2015 UCR Time Series 

Archive [1] using a temporal CNN and an LSTM.
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Summary

Background

▪ The elements of the input sample are warped to 

the time steps of the teacher sample using DTW.

▪ The generated pattern has the features of the input 

at the time steps of the teacher sample. 

▪ To select the most discriminative teacher, a 

nearest centroid classifier is used, or:
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ℎ 𝐛𝑚

𝐛𝑚 is a time series in bootstrap set 𝐁
𝒟 𝐛𝑚′ , 𝐛𝑚 is the DTW distance between 𝐛𝑚′ and 𝐛𝑚
𝑙𝑚 is the label of pattern 𝐛𝑚

Method CNN LSTM

No Augmentation 76.44 57.24

Jittering [2] 77.32 58.35

Rotation [2] 74.84 54.78

Scaling [2] 77.06 57.98

Magnitude Warping [2] 78.30 58.04

Time Warping [2] 78.10 52.80

Window Slicing [3] 79.15 54.49

Window Warping [2] 79.58 57.49

SPAWNER [4] 78.84 58.98

wDBA [5] 77.42 56.01

RGW-D (Proposed) 79.39 57.42

RGW-sD (Proposed) 79.27 56.43

DGW-D (Proposed) 80.12 56.01

DGW-sD (Proposed) 80.17 56.99
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