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Abstract—We propose a method for fusing stereo disparity
estimation with movement-induced prior information. Instead of
independent inference frame-by-frame, we formulate the problem
as a non-parametric learning task in terms of a temporal Gaus-
sian process prior with a movement-driven kernel for inter-frame
reasoning. We present a hierarchy of three Gaussian process
kernels depending on the availability of motion information,
where our main focus is on a new gyroscope-driven kernel for
handheld devices with low-quality MEMS sensors, thus also re-
laxing the requirement of having full 6D camera poses available.
We show how our method can be combined with two state-of-the-
art deep stereo methods. The method either work in a plug-and-
play fashion with pre-trained deep stereo networks, or further
improved by jointly training the kernels together with encoder–
decoder architectures, leading to consistent improvement.

I. INTRODUCTION

Stereo matching refers to the problem of estimating a dense

disparity map between a rectified pair of images. Given the

internal and external camera parameters for the two images

(see Fig. 1), a dense depth map can be obtained from the

estimated disparities via triangulation. Depth estimation is es-

sential in many computer vision applications like autonomous

driving and 3D model reconstruction. However, searching the

corresponding points in a stereo pair is an ill-posed problem in

the general case, since a scene may contain multiple disjoint

surfaces at different depths, while each camera senses only

a single optical surface. There can be equivalent surfaces

that produce the same images. Also, stereo matching can

be particularly challenging with texureless regions, repetitive

patterns, and signal noise, which urges the need for good

priors to regularize the solution. During the recent years, deep

learning has been shown to be effective in learning suitable

priors and convolutional neural networks (CNNs) are currently

the main paradigm for disparity estimation [1–7].

So far, most binocular stereo matching methods have only

considered single image pairs. Also, current popular bench-

marks like KITTI-2012 [8], KITTI-2015 [9], and Middle-

bury v3 [10] only focus on single-pair inference. However,

in many real-world applications, the stereo cameras actually

keep collecting sequences of image pairs, and the additional

information from multiple pairs could potentially be useful for

more stable and robust disparity estimation. Introducing in-

formation sharing between frames helps in obtaining temporal

consistency. Also, estimation in occluded regions could benefit

from using consecutive pairs. In addition, on small devices a

fixed stereo camera is constrained to have a small baseline,
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Fig. 1. Sketch of the logic of our approach: The inputs are a sequence of stereo
image pairs and corresponding motion information (e.g., a stream of three-
axis gyroscope measurements). We present a framework for fusing deep stereo
inferences (denoted by vertical red block) with movement-induced coupling
(see horizontal blue block). The GP inference (blue block) couples the latent-
space encodings of the methods based on the movement-induced prior that
carries over information between stereo pairs.

but utilizing a sequence of image pairs could effectively allow

to extend the baseline beyond the physical size of the device.

In this paper, we focus on solving disparity estimation

for image pair sequences. We propose an intuitive scheme

to introduce movement-induced prior information by framing

the problem as a non-parametric Gaussian process (GP, see,

e.g., [11]) inference task. We fuse information between the

latent feature representations produced for the stereo pairs

by deep networks that have encoder–decoder structures. We

present three different GP kernels depending on the availability

of motion information: (a) a full pose kernel is used when

full (6-dof) relative motion with rotations and translations is

known, (b) a gyroscope kernel is used if only angular rates

of the relative orientation changes are known (in a sequence

temporally in-between the camera frames), and (c) a time-

decay kernel is used in cases where motion is unknown (only

relative time difference between frames used as input). In

many cases, full relative motion could be available through

Figure 1. We present a framework for deep stereo inferences with movement-induced

priors. The GP inference (blue block) couples the latent-space encodings based on the

movement-induced prior that carries over informa on between stereo pairs. Our

proposed prior will not affect computa on of cost volume and only incorporate with

latent codes of the encoder–decoder part.

Motivation

We introducemovement-induced priors for deep stereo vision by fram-

ing the problem as a Gaussian process inference task. Central princi-

ples are:

Solving disparity es ma on for image-pair sequences

Fuse informa on between the latent representa ons

The latent representa ons of pairs with similar scenes should be

more correlated

Hierarchy of GP kernels

To inject the prior, we consider three different covariance func ons de-

pending on the availability of movement informa on:

(a) a full pose kernel when full rota ons and transla ons are known

(b) a gyroscope kernel when angular rates of the rela ve orienta on

changes are known

(c) a me-decay kernel when movement is unknown

(a) Dt (b) Dgyro (c) Dpose

Fig. 3. Examples of the different distance matrix. Our Markovian gyroscope
distance captures much of the same as the full pose distance, but without
access to the pose information.

TABLE I. Ablation experiment results on two data sets. κt denotes the time-
decay kernel, κgyro the gyroscope kernel, and κpose the pose kernel. Results
shows that the prior is always helpful, and that the gyro kernel can perform
close to the full pose kernel.

(a) Ablation study for DispNetC-ft-seq

Models
KITTI ZED

D1-all Avg-all SSIM PSNR

No prior 1.4134 0.6780 0.8770 32.7741
κt 1.1553 0.6214 0.8755 32.7658
κgyro 1.0846 0.6163 0.8797 32.8471
κt · κgyro 1.1339 0.6189 0.8793 32.8246
κpose 1.0749 0.6108 0.8800 32.8512

(b) Ablation study for PSMNet-ft

Models
KITTI ZED

D1-all Avg-all SSIM PSNR

No prior 1.3878 1.1722 0.8536 32.2463
κt 1.3607 1.1694 0.8536 32.2451
κgyro 1.3665 1.1698 0.8537 32.2468
κt · κgyro 1.3814 1.1715 0.8538 32.2487

κpose 1.2825 1.1542 0.8527 32.2352

(covariance function) that leverages this gyroscope distance,

Fig. 2c shows the kernel based on distance ∆s:

κgyro(ti, tj) = γ2

(

1+

√
3 |si − sj |

ℓ

)

exp

(

−
√
3 |si − sj |

ℓ

)

,

(9)

where γ2 is a magnitude and ℓ a length-scale hyperparameter.

The length-scale can control the smoothness of the regression.

All values of hyperparameters will be trained jointly with the

encoder–decoder architectures according to the loss function

(L1 loss or smooth L1 loss). Figs. 2d and 2e show the sample

cross-correlation of all latent encodings z for the sequence

using DispNetC and the effect after applying a GP with our

gyro-kernel. We also note that because of the Markovianity, the

GP can be solved in linear-time and the GP computation times

can be negligible compared to evaluating the encoder/decoder.

IV. EXPERIMENTS

We present extensive evaluation of the movement-induced

setup. The experiments section is split into three: We provide

a comprehensive ablation study in Sec. IV-A for evaluating

different kernels. Sec. IV-B focuses on showing the benefits

of the novel and lightweight gyroscope-kernel on KITTI data

which includes ground truth. Finally, we bring over these

benefits to handheld movement and lower quality inputs from

a ZED camera in Sec. IV-C.

We implemented our framework with the three different ker-

nels and two architectures in PyTorch. To combine proposed

prior kernels with the two representative models, for DispNetC

we re-implemented it in PyTorch, using a pre-trained model

on SceneFlow by [31] and fine tuned the model on KITTI-

2015 for 150 epochs (denoted ‘DispNetC-ft’ in the tables).

For PSMNet we used the original code and pre-trained models

on SceneFlow and KITTI-2015 provided by the authors. As

our method needs to be applied to sequences, the common

benchmarks KITTI-2012, KITTI-2015, and Middlebury for

disparity estimation are not ideal. Therefore we considered

the KITTI depth train/validation split, using focal lengths,

camera baseline, and depth labels to generate ground truth

disparity maps for training and testing. We use the training

set of KITTI depth to fine tune the encoder–decoder and

train hyperparameters for the GP kernels jointly (denoted

‘DispNetC-ft-seq-gp’ in the tables). And to test whether the

kernel can be applied to pre-trained models directly without

joint training, we directly use the learned hyperparameters (see

DispNetC-gp, DispNetC-ft-gp, PSMNet-gp, PSMNet-ft-gp in

the Table II).

There are 138 sequences in the KITTI depth training set,

and to jointly train the GP hyper-parameters with the encoder–

decoder models, we use mini sequences which consist of three

stereo pairs during training. To enable models to learn longer

length-scale within fixed-length mini sequences, we randomly

decide the interval length between frames. Thus there are

42,671 training mini-sequences in total. We trained with all

kernels for 4 epochs.

A. Ablation study

We conducted ablation experiments for comparing the per-

formance of three different prior kernels: the full pose kernel

κpose (based on Eq. (4), see [32]), our new gyroscope kernel

κgyro in Eq. (9), and a time-decay kernel κt in Eq. (3). The

time-decay model can even be seen as a baseline as it can

be interpreted as a trained low-pass filter. Fig. 3 shows the

computed distance matrices for the three kernel separately,

where our Markovian gyroscope distance effectively captures

similar pattern as the pose distance, but without access to the

pose information.

Table I presents results on both KITTI Depth and ZED

evaluation sets (presented in detail in Secs. IV-B and IV-C,

respectively). In each case, the hyperparameters of the GP ker-

nels were jointly trained with the corresponding architecture.

Almost all kernels lead to better results compared to the basic

architectures on KITTI, which demonstrates that introducing

temporal prior knowledge among sequences is always helpful.

As pose distance encodes more geometry information, the

κpose should be the most informative prior, so it also has the

best performance on both data sets for DispNetC. In contrast,

the time-decay kernel κt is more limited as it only consider

time without any geometry context. Though our proposed

κgyro utilizes only angular rotation rates rather than the full

camera pose, it still achieves comparable results with κpose.

We also test a product kernel between the gyro and time-

Figure 2. Examples of the different distance matrices. Our Markovian gyroscope

distance captures much of the same as the full pose distance, but without access to

the pose informa on.

Probabilistic Gaussian process inference

Though the way of aggrega on features can vary a lot, most method

use fully-convolu onal encoder–decoder architectures to regularize cost

volumes. We introduce a probabilis c prior to the latent space of

encoder–decoders, modify the outputs yi from the encoder by a Gaus-

sian process regression model:

zj(t) ∼ GP(0, κ(t, t′)),

yj,i = zj(ti) + εj,i, εj,i ∼ N(0, σ2),
(1)

where the covariance func on κ(·, ·) encodes the movement-induced

prior. The encoder output yi can now be seen as a ‘corrupted’ version of

the true (unknown) latent encodings zi.

Movement-induced priors

When we only have observa ons of angular velocity ω = (ωx, ωy, ωz),
we consider the rota onal distance metric:

dgyro(ti, tj) =
√

tr(I3 −
∏j

k=i+1 exp(−[ωk]× ∆tk)), (2)

where ∆tk = tk − tk−1. To leverage the distance in Markovian fashion,

we define the cumula ve pose-to-pose distance and the kernel:

si =
i∑

j=1

dgyro(tj−1, tj) (3)

κgyro(ti, tj) = γ2
(

1 +
√

3 |si − sj |
`

)
exp

(
−

√
3 |si − sj |

`

)
(4)

Experiments

We incorporate the proposed movement-induced prior and the GP infer-

ence with the two representa ve models, DispNetC and PSMNet.TABLE II. Experimental results on KITTI data sets benchmarking the gyroscope kernel in a GP. All results are tested with KITTI Depth val sets. Tag ‘-gp’
means using the gyroscope-driven GP at test time, ‘-ft’ means models are fine tuned on KITTI-2015, ‘-seq’ means using the KITTI depth training sets as
training sets. For Error rate and EPE (D1-all and Avg-all), lower number is better; for SSIM and PSNR, larger number is better.

Model
Training set GP used during KITTI ZED

SceneFlow KITTI-2015 KITTI Depth Training Testing D1-all Avg-all SSIM PSNR

DispNetC X 15.8510 2.3586 0.8446 32.2300
DispNetC-gp X X 14.5620 1.9730 0.8453 32.2356
PSMNet X 60.0773 6.7620 0.8002 31.5341
PSMNet-gp X X 60.9546 6.2786 0.7966 31.4693

DispNetC-ft X X 3.8739 0.9600 0.8592 32.3660
DispNetC-ft-gp X X X 3.1305 0.8584 0.8596 32.3726
PSMNet-ft X X 1.3878 1.1722 0.8536 32.2463
PSMNet-ft-gp X X X 1.3665 1.1698 0.8537 32.2468

DispNetC-ft-seq X X 1.4134 0.6949 0.8716 32.6382
DispNetC-ft-seq-gp X X X X 1.0939 0.6155 0.8797 32.8376
PSMNet-ft-seq X X 0.5391 0.5890 0.8827 33.0252
PSMNet-ft-seq-gp X X X X 0.5350 0.5883 0.8829 33.0280

decay which can be helpful for scenes with dynamic content

and significant translation over time.

B. Evaluation on KITTI

For evaluation on KITTI, there are 13 sequences which

include 3426 left–right pairs. We use both Average end-point-

error in total (Avg-all) and percentage of outliers (estimation

error is larger than 3 px and larger than 5% of the ground truth

disparity at this pixel) averaged over all ground truth pixels

(D1-all), to measure the performance.

Table II shows the performance on the KITTI depth vali-

dation data set. All ‘-gp’ models in the table correspond to

the proposed novel gyroscope kernel Eq. (9). All baseline

models that were only pre-trained with synthetic data suffer

from domain shift, and the artifacts lead to a high error rate.

According to the EPE metric, introducing our prior informa-

tion makes improvement for both pre-trained DispNetC and

pre-trained PSMNet. For PSMNet, as the baseline model have

particular high error rate, there are several sequences have

similar artifacts every frame, so our fusion scheme will lead

to higher error rate in this case. But if the artifacts only

appear in several frames in the whole sequences, our method

can fix artifacts automatically. Fig. 4 shows how our method

alleviates the artifacts. Models with tag ‘-ft’ are fine tuned

on KITTI-2015; the results show that after fine tuning all

models adapt to the new domain, while our method can still

improve the performance further based on that. The tag ‘-

ft-seq’ corresponds to models with training from pre-trained

model with KITTI depth sequences. Because of the larger size

of training samples, the resulting baseline models get the best

performance, and even the room for improvement becomes

limited, the prior can still refine the results.

During inference, the frame rate for the PyTorch-

implemented DispNetC is 154.3 fps, and after adding the GP

prior the frame rate is 50.6 fps. The frame rate for PSMNet is

3 fps, and after using the GP prior the frame rate is 3.1 fps. The

additional runtime introduced by the GP regression per frame

is ∼0.01 s, which shows that the method is time-efficient.

C. Evaluation on ZED

As most sequences in KITTI are moving straight at near

constant speed and scenes share similar structure, we also

sought more varied motion and environments for testing.

Due to lack of suitable public data sets, we collected five

indoor sequences by using a hand-held ZED stereo camera

(https://www.stereolabs.com), which provides both left/right

image pairs and tracking information. The resolution of col-

lected pairs is 1280×720 and the capture rate is 10 fps.

There are 2194 test pairs in total. The full-pose information

is also provided by the sensor, and to evaluate our proposed

gyroscope-kernel, we derivate the angular velocities by con-

verting the quaternion sequences. This data illustrates the

kind of challenging motion and varied use cases that, e.g.,

smartphone data would feature.

However, since there is no depth sensor on the ZED camera,

there is no ground truth depth/disparity map provided. In

that case, to evaluate results, we use predicted disparity maps

and the right images to synthesize left images, and then use

structural similarity (SSIM) and peak signal-to-noise ratio

(PSNR) to measure the similarity between warped left images

and original left images. For these metrics, larger numbers

mean higher similarity, which indicates higher quality of

predictions. Specifically, the SSIM is given by

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (10)

where for each input windows x and y, the µx and µy are

the average and σ2
x and σ2

y are variances over windows x

and y correspondingly, σxy denotes the cross-covariance. We

use constants c1 = 0.012 and c2 = 0.032. The other metric

is PSNR(x, y) = 20 log10

(

MAXI√
MSE

)

, where MAXI is the

maximum possible pixel value of the image (here is 255) and

MSE is the mean squared error over inputs x and y.

In Table II, almost all models present similar trends on

both KITTI and ZED data sets. For DispNet the fusion always

helps. For baseline models that suffer from domain shifting,

it is difficult to boost the performance by only fusing the

latent code. After jointly training the GP kernel and the

encoder–decoder, though the training set is still different from

evaluation domain, the results get better. And we have more

results in Sec. IV-A to show that introducing prior can be

beneficial for PSMNet without re-training.

Both the DispNetC and PSMNet pre-trained from synthe c data show

ar facts, and our prior helps to alleviate them.
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Fig. 4. Example sequence from KITTI 2011 09 26 drive 0095 sync. Both the DispNetC and PSMNet pre-trained from synthetic data show artifacts, and
our prior helps to alleviate them. The accompanying faster-sampled gyroscope data from the KITTI data set is visualized on the top with the circles marking
the frame timings of the these five frames. For comprehensive quantitative results, see Tables I and II.
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Fig. 5. Example frames from sequences collected with a ZED camera and
results with DispNetC. Using priors helps in texture-less regions like the table
and the wall (see red boxes). Here the full pose-kernel can be seen as close
to ground truth, and the gyro-kernel performance matches it well, even if the
requirements for it are more lightweight.

V. DISCUSSION AND CONCLUSION

In the paper, we showed that introducing temporal priors for

state-of-the-art deep stereo methods can improve performance,

and proposed a novel movement-induced kernel that only

needs angular rates rather than full camera pose. Our latent-

space fusion strategy can be applied to almost all existing

learning-based stereo matching methods to regularize the cost

volume. Thus this work provides a complementary track for

improving deep stereo estimation. In the experiments, we

demonstrated that the technique can both be incorporated with

pre-trained model directly or can be used in fine-tuning pre-

trained models and GP hyperparameters jointly. Our qualitative

results show that leveraging movement-induced priors can

help alleviate artifacts caused by domain shift via enforcing

temporal consistency.

As the method mainly aims to solve the inconsistency

among frames in sequences, one limitation is that if the base-

line predictions on all frames are wrong, the prior cannot boost

performance as they are consistently bad already. Another

limitation is that we only consider the movement of cameras,

and disregards dynamic objects. Dealing with those dynamic

objects can be a direction for future work.

The codes will be made available at https://github.com/

AaltoVision/movement-induced-prior.

ACKNOWLEDGMENTS

The authors acknowledge the computational resources pro-

vided by the Aalto Science-IT project. This research was

supported by the Academy of Finland grants 308640, 324345

and 309902.

REFERENCES

[1] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Doso-
vitskiy, and T. Brox, “A large dataset to train convolutional net-
works for disparity, optical flow, and scene flow estimation,” in
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 4040–4048. 1, 2, 3, 10

[2] J. Zbontar, Y. LeCun et al., “Stereo matching by training
a convolutional neural network to compare image patches.”
Journal of Machine Learning Research, vol. 17, no. 1–32, p. 2,
2016.

References

[1] Jia-Ren Chang andYong-Sheng Chen. Pyramid stereomatching network. InCVPR, pages 5410–5418,

2018.

[2] Yuxin Hou, Juho Kannala, and Arno Solin. Multi-view stereo by temporal nonparametric fusion. In

ICCV, pages 2651–2660, 2019.

[3] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, and

Thomas Brox. A large dataset to train convolu onal networks for disparity, op cal flow, and scene

flow es ma on. In CVPR, pages 4040–4048, 2016.

ICPR 2020 yuxin.hou@aalto.fi

mailto:yuxin.hou@aalto.fi

	References

