UNI FR

U **Classification of Intestinal Gland Cell-Graphs Using Graph Neural Networks**

UNIVERSITÄT BERN

Linda Studer^{1,2,3}, Jannis Wallau³, Inti Zlobec³, Heather Dawson³, Andreas Fischer^{1,2}

¹ Document, Image and Video Analysis (DIVA) Research Group, University of Fribourg, Switzerland ² iCoSys, University of Applied Sciences and Arts Western Switzerland ³ Institute of Pathology, University of Bern, Switzerland

WHY GRAPHS?

Pathologist consider morphological changes in tissue, spatial relationship between cell (sub-) types, density of certain cells etc.

 \rightarrow Graphs are able to represent the geometrical and topological properties of colorectal glands

PT1-GLAND GRAPH DATASET

- 26 well-defined glands extracted from H&E stained images from 20 different patients (13 dysplastic, 13 normal) \rightarrow 520 in total
- Graph representations: one node for each cell. Every node is connected to its spatially two closest neighbours.

GRAPH NEURAL NETWORKS (GNNS)

- Message Passing (Graph Convolution): Send message of features to all neighbors \rightarrow update hidden state according to graph convolution type. More layers = larger neighborhood to collect information from
- **Read-out phase:** Compute vector representation of the whole graph $v_G \rightarrow$ used to perform classification

• 33 node features extracted using QuPath (based on the cytoplasm staining , cell, and nucleus)

Fig. 2: Examples of cell-graphs in the pT1 Gland Graph dataset overlaid on the H&E image. Cells are represented as nodes in the graph (in orange) and are connected with edges (in green) based on the physical distance between them.

RESULTS

Table 1: Average accuracy and standard deviation achieved by the different GNN architectures on the full and baseline node feature set, along with the Graph Edit Distance (GED) baseline and a additional CNN baseline (with and without image rotation data augmentation).

# Node F	# Node Features	
4 (baseline)	33 (all)	
	04 C + 2.20/	

EXPERIMENTAL SETUP

- Graph convolutional layers: Graph Convolution Network (GCN), GraphSAGE, Graph Attention Networks (GAT), Edge Network (enn), Graph Isomorphism Network (GIN), 1dimensional GNN (1-GNN)
- Compare two node feature sets: 4 features used by baseline versus full features set (33)
- 4-fold cross-validation
- Binary classification: normal or dysplastic gland

	89.2 ± 5.8%	94.0 \pm 2.5%
GAT	$85.5 \pm \mathbf{5.4\%}$	$94.3\pm2.4\%$
GCN	$85.5 \pm \mathbf{4.9\%}$	$94.5\pm2.6\%$
GCN-JK	$85.4 \pm \mathbf{4.5\%}$	94.8 ± 2.4%
GIN	$89.0 \pm \mathbf{4.1\%}$	$94.5\pm2.6\%$
GraphSAGE	$85.4 \pm \mathbf{4.5\%}$	94.8 ± 2.4%
GraphSAGE-JK	$85.1 \pm \mathbf{5.2\%}$	$94.7 \pm \mathbf{2.4\%}$
enn	$89.1 \pm \mathbf{3.7\%}$	93.7 ± 3.0%
GED-Baseline[1]	$83.3 \pm \mathbf{1.7\%}$	n/a
CNN (VGG-16)	91.8 ± 5.5%	
CNN (VGG-16-Rotation)	92.0±5.1%	

[1] Graph-based Classification of Intestinal Glands in Colorectal Cancer Tissue Images, Studer et. al., COMPAY workshop, MICCAI 2019

Fig. 3: Schematic overview of the used graph neural network architecture. The dotted arrows correspond to the setup with and without Jumping Knowledge, respectively.

CONCLUSION

- Different types of GNNs achieve similarly good results
- GNNs can profit from the full 33 node feature set
- Beat SOTA results achieved with Graph Edit Distance (GED)

Acknowledgement: The work presented in this paper has been partially supported by the Rising Tide foundation with the grant number CCR-18-130.

github.com/waljan/GNNpT1

pathology.unibe.ch

Contact Linda Studer linda.studer@unifr.ch