GAN-Based Image Deblurring Using DCT Discriminator

Hiroki Tomosada, Master 2 Ikehara Lab, Keio University, Japan

- Image Deblurring
- Produce clear images by image deconvolution.
- Promote camera minimization.
- Can restore images after filming.

Ex:) Lena, Blur strength size=21

Blur Image I_B

Original Image I_S

PSF k

 $I_B = k \otimes I_S + n$

It is difficult to Estimate Original Image...

Conventional Method

- Non-Blind Image deblurring.
 - Kernel Estimation
- Blind Image deblurring.
 - CNN Based Methods

CNN-Based Methods

- CNN Using GAN
- Single Encoder Decoder Architecture
- Multi-Scale Architecture

Generative Adversarial Network (GAN)

Problem

- Multi-Scale and Multi-Patch Architecture takes much time.
- Lacks detail of image.
- Leaving block noise or ringing artifacts

Multi-Scale Architecture

Overview of our proposed method

- Single Scale Architecture
- Include Adversarial loss by using discriminator
- Using Discrete cosine transform for loss

Overview of our proposed method

• Architecture

- \cdot Simple Encoder Decoder
- \cdot 7 Residual Block (ResBlock)
- \cdot Parametric ReLU(PReLU) is adopted in order to prevent overfitting

• Train Dataset

A part of GOPRO, DVD, NFS, HIDE Dataset are used for training.

Influence of DCT loss

Sharp

Non-linear Kernel

Linear Kernel

7

Trained without DCT loss $% \left({{\left({{{{\rm{DCT}}}} \right)}_{\rm{T}}}} \right)$

Trained with DCT loss

Subjective Result Testing Dataset

DeblurGAN

Jv2

SRN

DeblurDCTGAN

Subjective Result Real Image

DeblurGAN

DeblurGANv2

SRN

DeblurDCTGAN

9

Result of PSNR and SSIM

Method	Processing Time	GOPRO		DVD		NFS		HIDE	
		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Blurred		25.64	0.8580	26.97	0.8462	32.09	0.9426	23.95	0.8299
DeblurGAN	$0.85 \mathrm{s}$	25.02	0.8493	25.31	0.8368	28.20	0.9254	23.56	0.8181
DeblurGANv2	$0.35~\mathrm{s}$	28.00	0.9051	28.68	0.8871	32.55	0.9484	26.61	0.8899
SRN	$1.87 \mathrm{~s}$	30.25	0.9397	29.37	0.9110	32.58	0.9589	28.36	0.9208
DeblurDCTGAN	0.28 s	30.46	0.9428	30.15	0.9205	33.96	0.9632	28.84	0.9322

Conclusion

- DeblurDCTGAN can precisely remove blur.
 - By using GAN, details of the restored image can be retained.
 - DCT loss can reduce block noise or ringing artifacts.
- Relative to conventional methods, processing time of DeblurDCTGAN is reduced.