

MOTIVATION

In computer vision, recent trends seem to suggest that the Local binary patterns (LBP) are considered among the most efficient texture features.

• Although, several colour extension of LBP processes the colour texture in a separated processing thanks to grey-level texture features applied on each colour channel.

CONTRIBUTION

Aware of the high interaction that exists between different channels in the color image.

• We introduce a new vector process to define a local descriptor for colour images called Local Binary Quaternion Rotation Pattern (LBQRP), which based on quaternion representation.

QUATERNIONS

Any quaternion $q \in \mathbb{H}$ may be represented in hypercomplex form q = a + bi + cj + dk. Where $\{i, j, k\}$ satisfying $i^2 = j^2 = k^2 = ijk = -1$.

- Norm : $|| q || = \sqrt{a^2 + b^2 + c^2 + d^2}$
- Conjugate : $\overline{q} = a bi cj dk$
- Unit quaternion : || q || = 1
- Polar form : $q = || q || \exp^{\mu \theta}$

$$\begin{pmatrix} \mu = bi + cj + dk/\sqrt{b^2 + c^2 + d^2} \\ \theta = \arccos(a/\parallel q \parallel) \end{pmatrix}$$

Any rotation $\in \mathbb{R}^3$ can be described using a unit quaternion q as: $q = \cos(\theta/2) + v \sin(\theta/2)$. The geodesic distance between two unit quaternions or rotations:

$$dist_{\mathbb{H}}(q_1, q_2) = \left\| \log(q_1^{-\frac{1}{2}} q_2 q_1^{-\frac{1}{2}}) \right\|$$
(1)

 Geodesic distance (shortest Arc) — Longer Arc Euclidean distance

LOCAL BINARY QUATERNION ROTATION PATTERN FOR COLOUR **TEXTURE RETRIEVAL**

Hela Jebali¹, Noël Richard² and Mohamed Naouai¹ ¹Faculty of Science of Tunis, University campus el Manar, Tunisia ²University of Poitiers, XLIM UMR CNRS 6172, France

LOCAL BINARY QUATERNION ROTATION PATTERN

Representing color image as a unit quaternion, distance (θ) between two chromaticity vectors. each color vector can be treated as a rotation.

Using the Equation (1), we estimate the geodesic

PERFORMANCE IN CLASSIFICATION

CONCLUSION

- A new texture feature
- Very performant for color texture retrieval/classification:

• Small value of angle θ : indicate a few chromaticity variation or a great similarity between two color pixels.

• **Big value of angle** θ : indicate a great difference between two color pixels.

At a given quaternion pixel q_c , LBQRP is defined as an ordered set of binary representation of the chromaticity variation between the center pixel and its *n* surrounding pixels.

	Rot	ation
t	0.065	0.1
	0.033	0
	0.041	0.2

mage classification:	Methods	Year	Vistex	Outex	USPte
learest Neighbor Classifier (1-NN).	LBPV	2010	_	76.53	77.78
vnorimente en three challenging color	CLBP	2010	_	81.30	88.10
sperments on three chanenging color stacets: VicTox Outox and USPtox	ICCD	2013	98.10	89.30	_
alasels. VISTEX, Oulex and OSI lex.	SMGD	2014	97.50	89.70	_
ults are given for:	QLBP	2014	98.07	78.19	84.82
$= radians(1^{\circ})$	Local jet+ Fourier	2015	97.84	87.16	89.63
ullback-Leibler divergence	C_2O	2015	99.30	82.64	_
	CLP	2016	97.70	82.10	_
	QLRBP	2016	98.41	79.17	86.74
	LED+ED	2017	94.70	76.67	90.50
0	LNDP	2017	_	77.16	80.66
	CNN- AlexNet	2017	91.34	69.87	83.57
0	SMO	2018	99.54	86.47	91.49
io	LDTP	2018	75.82	80.32	84.11
ιο	RC_2O	2018	100	92.40	_
	LCCMSP	2018	_	84.87	90.01
Threshold T (radians)	ARCS-LBP	2019	_	85.72	88.88
— Kullback-Leibler —▲— Euclidean —↓— Canberra →— Manhattan	Proposed L	BQRP	98.37	92.64	91.62

	Cont
 In front of the actual state of the art Extension to more datasets and classification criteria are in course 	Email je Phone +

TACT INFORMATION

ebalii.hela@gmail.com +(216) 92 566 090