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1. Background & Motivation
g > A dense encoder What is self-attention?

The recent studies of Chinese character recognition (CCR) can be roughly

L N . h Attn(q, K, V) = soﬁ:max(q—KT)V
divided into two categories: character-based CCR and radical-based CCR.
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head; = Attn (qW KW, vw)’)

» A transformer decoder

® Character-based methods can perform well on common Chinese
characters with a lot of training data. But they have difficulty in dealing with
zero-shot learning problem and perform poorly when handling complex
characters.

® Radical-based methods has the ability to recognize unseen Chinese
characters, However, to recognize more complicated radical structures or
learn the composition rules of low-frequency samples.
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» Training Objective
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Therefore, it is important to build a more powerful recognition system for CCR.

® Self-attention mechanism can capture long-range dependencies and the
detailed internal pattern

® The Transformer is composed of stacked blocks and aggregates the input 3. Experiments and Results
context for each block, which naturally provides us with more hierarchical

representations.
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Our experiments are conducted on both printed Chinese character dataset and
natural scene Chinese character dataset.

» Experiments on single-font printed Chinese characters

° Comparison of accuracy rate between RTN and RAN with different caption
lengths on different font-style unseen Chinese characters respectively.

RAN(%) RTN(%)
ALL <6 >6 ALL <6 >6

Song 9221 0365 0078 9454 9493 9416
FangSong  91.04 9198 0011 9421 9484 9357
Hei 90.41  01.34  80.50 9279 9241 9311
Kaiti 88.57 0059 8658 9131 9296  89.67

Font Style

o~ * Hierarchical radical structure of
Lo an example Chinese character

. Comparison of -level y RTN and RAN with
respect to the frequency of radicals.

2. The Proposed Method Recuraeyin ) o

9500 91‘2:-9:_—_7
Architectures of the Transformer-based radical analysis network (RTN) " / TR omen e s
contains two components: ::: %
(1) adense encoder which takes the image as input to produce a fixed- oo
length context vector; 120 2040 080 20300 300+
(2) atransformer decoder which takes the context vector as input to Frequency of radicals

generate a variable-length symbol sequence.
» Experiments on natural scene Chinese characters

. Comparison of the performance of RAN and RTN with the different
pp freq y of level categories.

Frequency <20 < 50 < 100 HF ALL
Categories 308 511 335 1044 2015
Samples 1128 1229 1663 48745 52765

Linear&Softmax

RAN 25.880%  47.92%  65.12%  80.01%  85.95%
RTN 41.84%  6L51% TL6T% 89.76%  87.51%

Fixed-length
Context Vector Ve ™
: AddENorm ®  Comparison of the recognition performance of ®  Comparison of the recognition performance of
RTN and RAN with different caption lengths RAN and RTN with respect to 6 attributes on
on the CTW valid database. the CTW test dataset.
5 Attributes  Training Samples  RAN(%)  RTN(%)
Model _ Coptlonleneth Al 760107 85.56 8731
Add&Norm ALL <4 >4 occluded 101393 7155 73.04
0 background 218560 82.84 84.57
RAN  8595% 80.33%  8231% distorted 192481 755 8360
RTN 87.51%  90.02%  84.80% 3D raised 199066 76.17 78.06
Accuracyt  L56% 0.69% 2.49% wordart 65083 8711 8425
handwritten 6661 63.58 66.70
X N

4. Conclusion

v'We explore the option to improve the capability of RAN by
employing the Transformer architecture.

v The proposed model achieves significant performance
improvements on both printed Chinese character database
and natural scene Chinese character database.

[ Eﬁﬂ v Further analysis proves that RTN is more effective and

ry - robust than RAN for recognizing complicated and low-

Positional | frequency samples
Encoding |

Add&Norm




