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Background

Image-sentence retrieval

o o0 Image captioning

Image question answering

There are
many kinds of
vegetables

Motivation

[ Coarse-grained image-text matchmg] \

[ Fine-grained image-text matching ]%

» Incorporating the complementary advantages of global alignment[1] and
local correspondence(2] in a unified framework.

» Develop a suitable learning strategy to balancing their relative importance.
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»  Our proposed VSR++ model, which can incorporate the advantages of
global image-text alignment and local region-word correspondence for
fine-grained image-text matching.

A.Image Representation
We extract a set of features V = {vy,..,v},v; € R? from each image ! by the bottom-up
attention mechanism(3], such that each feature v; encodes an object or a salient region in this image.
=Wefi+ by (9]
B. Global Visual Semantic Similarity
- We first build up connections among image regions and perform region relationship reasoning
with Graph Convolutional Networks (GCNs)[4] to generate features with semantic relationships.
R= (W, v)" (W, v) )
- After that, we also use the GRUs network to perform g\obal semantic reasoning on these features
with semantic relationships to generate the final global representation of the image.
- we use a bidirectional text-based GRU[5] encoder to map the whole text T to the same D-
dimensional semantic vector space R as the text global representation Ty,
- Then we adopt the cosine similarity function to measure the similarity between the global image
representation I and the global text representation T..
Se(WD) =g T 3

C. Local Fine-Grained Correspondence
- Image-Text Local Cross-modal Attention
Input Text T: Woman in red shirt is holding an infant.
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-Obtain the final image-text similarity S,(I, T) in a locally fine-grained correspondence([2]

D.Model Learning Strategy

-we comprehensively fuse two similarity scores for global image-text alignment and local region-word
correspondence, as well as balance their relative importance at a certain ratio

SUT) = Se(LT) + uS,(LT) 9
-we adopt a hinge-based triplet ranking loss to learn the matching part.
Leriprer = max[0,a — SULT) + S(1,T)] + max[0,a — SU, T) + S(1,T)] (10)
-The training loss[1,6] for text generation is represented as:
'
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-In order to jointly match and generate for model learning, our final loss function is defined as follows:

L = Lyriptec+Lgeneration 12)

5) "VSR++(GRU)", a network that only uses GRU instead of Bi-GRU as the text encoder in our full
VSR++ model.

6) "VSR++(full)", which denotes the full VSR++ model.

-u represents the association parameter.

Table 1: Ablation studies on Flickr30k to investigate the effect  Table 2: Ablation studies on Flickr30k to analyze the impact of
of different network structures and different association ways. differentvalues of the association parameter j between the
Results are reported in terms of recall@k(R@K). global alignment and local correspondence.
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B. Comparisons With The State-of-the-art

Table 3: The result of VSR++ on MS-COCO (1K test) dataset. Table 4: The result of VSR++ on Flickr30K dataset.

Experimental Results

A.Evaluation of Ablation Models

1) “Global”, which only performs the global image-text alignment[1] learning.

2) “Local”, which only performs the local fine-grained correspondence[2] learning.

3) "Fusion-loss”, which only considers the mutual influence of the training loss of the two modules
during the training process, but does not fuse their similarity.

4) "Fusion-similarity”, which associates the similarity of the two modules and learns the model in a
unified framework.
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C. Visualization and Analysis

-Qualitative results of two different methods in the ii |mage -to-text retrieval.
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Query (a): A couple i sitting on the sand with their feet in
the water , and they are shaking hands.

Query (b): Six people ride mountain bikes through a
jungle environment.
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Conclusion

for fine-grained image-text matching

(2) We propose an effective learning strategy to balance the relative importance of global alignment and local
correspondences, which can well exploit their complementary properties.

(3) Our model achieves the state-of-the-art performance on the task of the image-text matching on MS-COCO

(1) We improve the VSRN[1] by additionally modeling the local correspondences between regions and words
and Flickr30K datasets.
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