1073: Feature Point Matching in Cross-Spectral Images with Cycle Consistency Learning

東京大学

Ryosuke Furuta, Naoaki Noguchi, Xueting Wang, and Toshihiko Yamasaki The University of Tokyo

Background:

Feature Point Matching

CNN_e

 CNN_{θ}

≻ Applications:

etc.

image I_A

Proposed Method: ≻ Training phase

Image stitching

shared weights

> Deep learning-based approaches: HardNet [Mishchuk, NeurIPS17]

c-dim. feature $f_A(p)$

cycle consistency loss

 $F_{A \to B} = \sum w_{pa} q$

- **3D** reconstruction AffNet [Mishkin, ECCV18]
 - D2Net [Dusmanu, CVPR19]

Feature Point Matching in Cross-Spectral Images

- > E.g., between RGB and Near-Infrared (NIR) images Not easy to obtain ground truth correspondences to train CNNs
- We propose a self-supervised learning method by utilizing the cycle consistency of the corresponding points

$H \times W \times 3$ **Experimental Results:**

image I_R

> Stereo Matching on KITTI 2012 dataset (Three simulated cross-spectral settings)

output tensor

 $H \times W \times c$

 $F_{B\rightarrow}$

	Error rate [%] ↓			Mean error [pix] ↓		
	RGB stereo	RGB2gray	anaglyph	RGB stereo	RGB2gray	anaglyph
Ours	39.0	35.4	27.6	5.29	4.93	4.20
Baseline	52.8	49.9	57.9	7.31	6.92	8.20
CVF [Hosni, TPAMI12]	43.9	43.7	34.0	5.65	5.59	4.71

Left image

Ours (Learned feature + NN matching) (Handcrafted feature + NN matching)

CVF (Handcrafted feature + Filtering + Post-processing)

Ground truth

Stereo Matching on PittsStereo dataset (RGB2NIR)

	Mean error [pix]	Inference time [s]	Note
Ours	8.20	0.00619	Python + GPU
Ours + guided filter	6.27	0.00776	Python + GPU
Baseline	11.2	0.0111	Python + CPU
CVF [Hosni, TPAMI12]	2.29	14.4	Python + CPU
CMA [Chiu, BMVC11]	4.00	227	-
ANCC [Heo, TPAMI11]	2.63	119	-
DASC [Kim, CVPR15]	1.28	44.7	-
DMC [Zhi, CVPR18]	0.80	0.02	Tailored for cross-spectral stereo
F-cycle GAN [Liang, AAAI19]	0.84	0.04	Tailored for cross-spectral stereo

- Better accuracy than hand-crafted methods on KITTI dataset
- Not as accurate as the state-of-the-art methods but much faster on PittsStereo dataset