Group-wise Feature Orthogonalization and Suppression for GAN based Facial

Attribute Translation

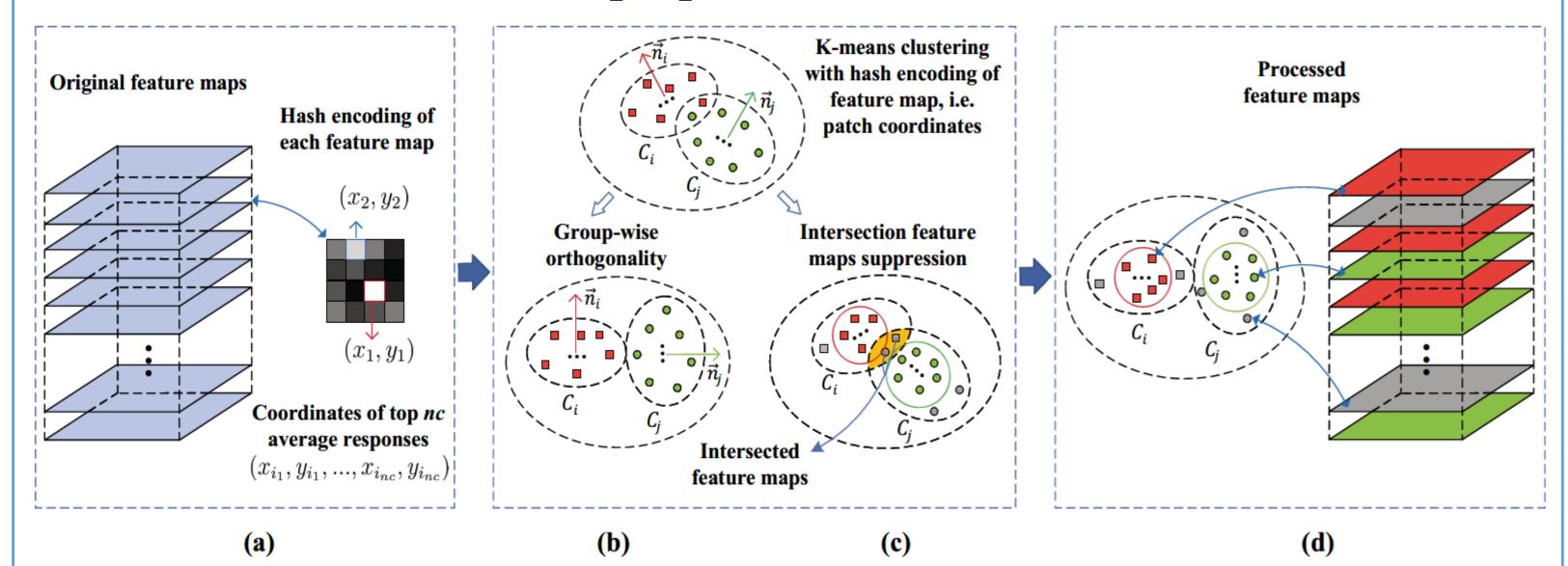
Zhiwei Wen¹, Haoqian Wu¹, Weicheng Xie^{1,3}, Linlin Shen^{1,2,3} ¹Computer Vision Institute, Shenzhen University, Shenzhen, China ²Shenzhen Institute of Artificial Intelligence and Robotics for Society, PR China ³Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, PR China

Introduction

Generative Adversarial Network (GAN) has been widely used for object attribute editing. However, the semantic correlation, resulted from the feature map interaction in the generative network of GAN, may impair the generalization ability of the generative network.

In this work, semantic disentanglement is introduced in GAN to reduce the attribute correlation. Meanwhile, the feature maps in the intersection regions are further suppressed to reduce the attribute-wise interaction.

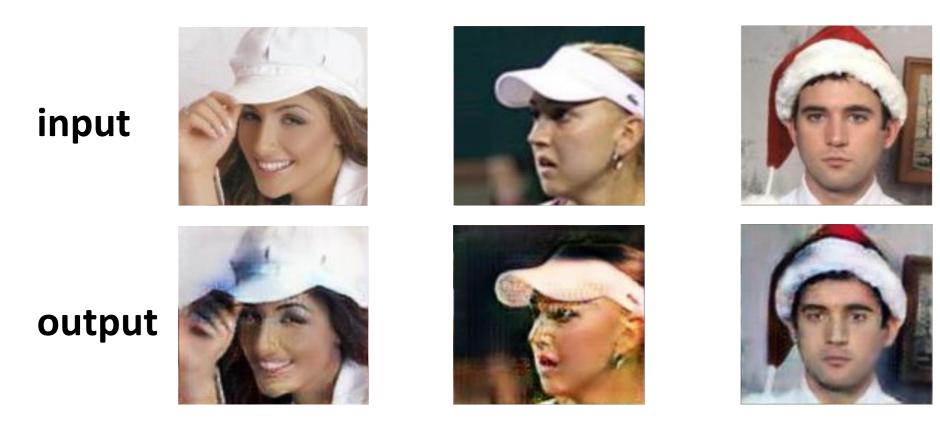
Contribution

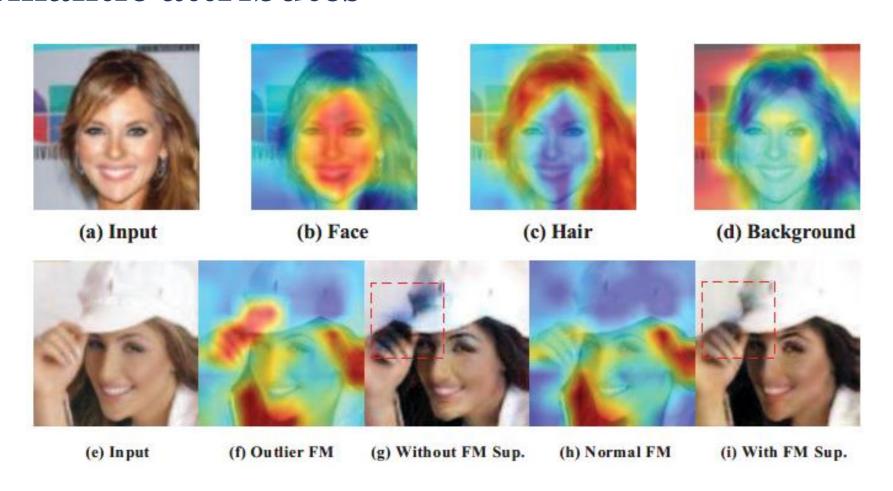

Hash Encoding: Feature map clustering is proposed to excavate semantic attributes and reduce their correlation based on an effective encoding of the feature maps.

Semantic Disentanglement: Group-wise orthogonality and intersection feature suppression are proposed to reduce attribute interaction.

Generalization Performances: Better generalization performances on visual and quantitative results are achieved by the proposed GAN.

Proposed Method


The framework of the proposed GAN


Network loss function

$$\begin{cases} \mathcal{L}_{drop} = E_{x,c'}[||G(x,c') - G_{drop}(x,c')||_{1}], \\ \mathcal{L}_{rec} = E_{x,c,c'}[||x - G_{drop}(G(x,c'),c)||_{1}], \\ \mathcal{L}_{G} = \mathcal{L}_{OriG} + \lambda_{drop}\mathcal{L}_{drop} + \lambda_{rec}\mathcal{L}_{rec} + \lambda_{GO}\mathcal{L}_{GO}, \\ \mathcal{L}_{D} = \mathcal{L}_{OriD}. \end{cases}$$

Attribute entanglement

Excavate semantic attributes

Experiment

Hash Encoding

Method	Accuracy ↑	IS ↑	FID ↓	RT ↓
Hash encoding	98.41%	2.770	43.51	0.102
PCA	98.21%	2.769	44.71	0.261
Direct vectorization	98.81 %	2.759	46.92	1.289

↑ means larger numbers are preferred, ↓ means opposite.

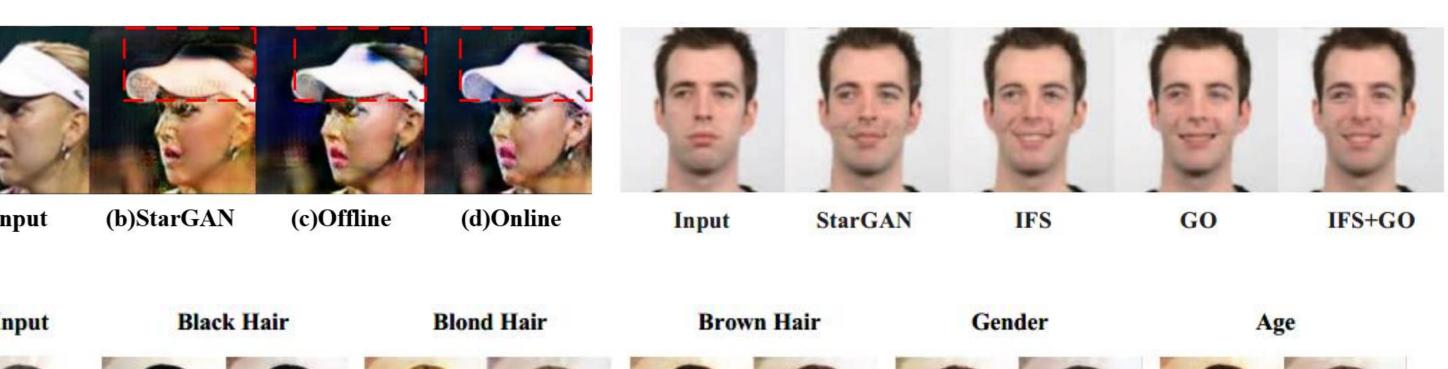
CelebA and RaFD

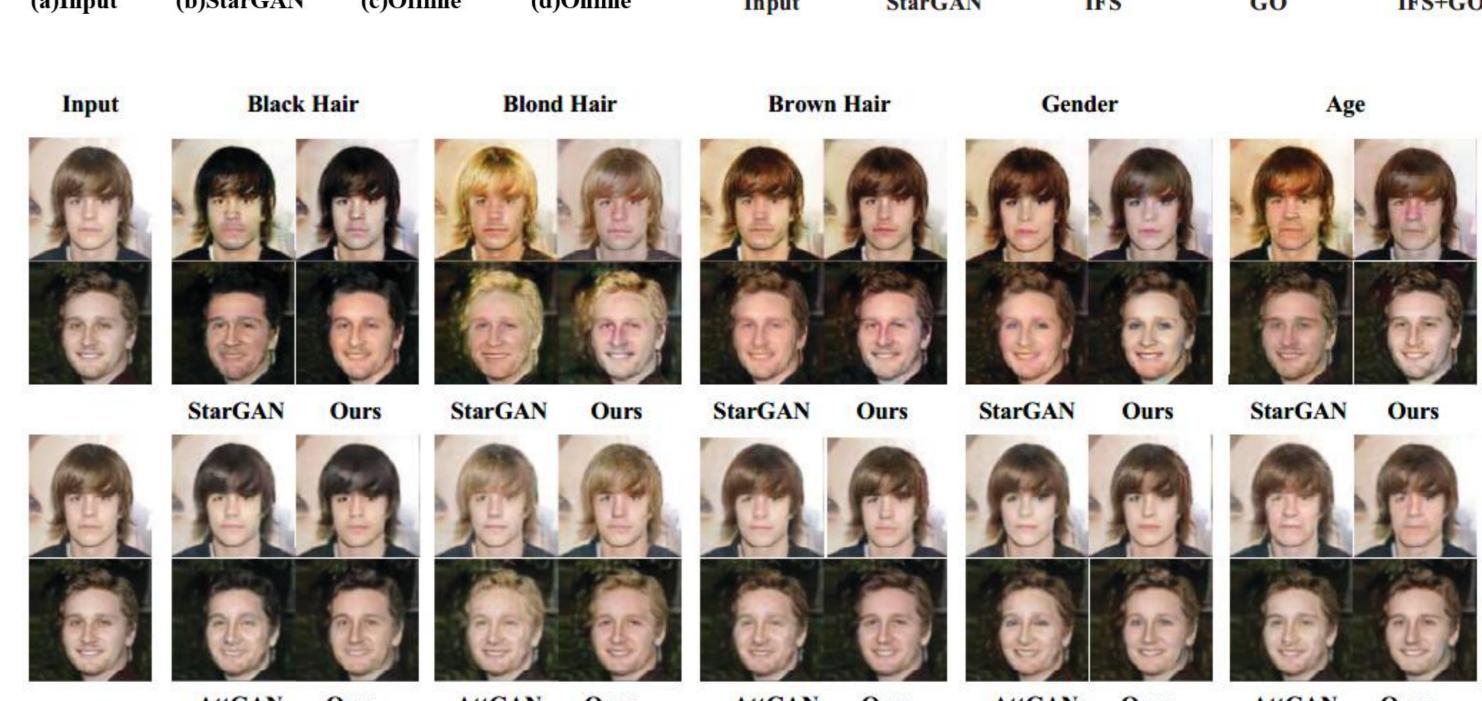
Meas.	Method	Black	Blond	Brown	Gender	Age
Acc. ↑	StarGAN	66.77	78.98	55.96	60.06	63.46
	Ours	78.08	71.37	63.76	63.06	63.36
	AttGAN	50.55	31.23	34.33	63.96	58.16
	Ours	55.16	42.14	36.04	65.97	69.37
IS ↑	StarGAN	1.178	1.182	1.014	1.200	1.122
	Ours	1.204	1.237	1.033	1.221	1.127
	AttGAN	1.317	1.329	1.131	1.310	1.111
	Ours	1.331	1.344	1.157	1.325	1.121
FID ↓	StarGAN	65.90	93.06	71.28	105.06	85.58
	Ours	58.86	79.92	64.86	101.73	76.68
	AttGAN	62.29	84.94	66.41	101.03	82.56
	Ours	56.63	82.51	60.97	98.78	78.06

Method	Accuracy ↑	IS ↑	FID ↓
StarGAN	97.62%	2.516	46.59
StarGAN+IFS	97.02%	2.673	46.53
StarGAN+GO	97.62%	2.617	44.56
StarGAN+IFS+GO	98.41%	2.770	43.51
AttGAN	65.48%	2.785	60.39
AttGAN+IFS	69.84%	2.803	51.02
AttGAN+GO	70.63%	2.827	50.01
AttGAN+IFS+GO	73.02%	2.918	53.24

↑ means larger numbers are preferred, ↓ means opposite.

Generalization Performances


Metric	Method	Black	Blond	Brown	Gender	Age
Acc. ↑	StarGAN	53.75	62.50	57.29	70.63	66.67
	Ours	80.42	50.63	60.63	74.79	77.50
	AttGAN	56.46	15.83	43.33	41.04	50.42
	Ours	59.17	11.46	49.58	44.38	74.38
IS ↑	StarGAN	1.192	1.083	1.003	1.126	1.067
	Ours	1.211	1.087	1.024	1.176	1.078
	AttGAN	1.238	1.050	1.180	1.028	1.069
	Ours	1.276	1.052	1.183	1.050	1.082
FID ↓	StarGAN	138.74	169.35	150.26	176.01	188.59
	Ours	136.85	163.49	142.78	161.10	172.46
	AttGAN	138.97	191.56	152.34	184.23	171.03
	Ours	139.43	184.73	154.79	170.23	156.69


↑ means larger numbers are preferred, ↓ means opposite.

Visual Results

AttGAN StarGAN Ours

[↑] means larger numbers are preferred, ↓ means opposite.