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Pruning an Artificial Neural Network (ANN)
ANN pruning is the act of removing one or more connections between neurons.
Pruning can be carried out during or after training, there exist a fair amount of 
techniques in both cases.
E.g., pruning during training can be carried out via LASSO or L-1 norm regularization 
In this work, we are going to concentrate on pruning after training.
Magnitude pruning removes parameters whose absolute value is low w.r.t. the 
other parameters.
A pruning rate 𝒑𝒑 ∈ (0,1) needs to be fixed which identifies the proportion of 
weights that will be removed from the ANN.

Re-training and iterating
Since, after pruning, it is likely that the ANN accuracy will suffer of some 
degradation, usually the pruning is followed by a re-training.
An iterative scheme can hence be devised, in which an iteration consists of re-
training and pruning, each time removing a fixed proportion of weights 𝑝𝑝 and re-
training the surviving parameters.

Stoppage is performed when (a) the performance of the 
pruned and re-trained network falls below a threshold, or (b) a target value for 
sparsity is reached.
The iteration of a magnitude pruning scheme is called Iterative Magnitude 
Pruning (IMP) [1].

Speeding-up IMP
IMP and WR [source] can effectively produce ANNs with comparable or higher
accuracy than their unpruned counterpart while having a much smaller number
of parameters.
There are multiple downsides of this, one being that the time for repeatedly re-
training the ANN becomes extremely high.
Our work experiments with finding an easy way of speeding-up the execution of 
IMP by reducing the number of epochs for re-training.
Suppose that we train the unpruned ANN for 𝑇𝑇 epochs and we apply IMP for 𝐾𝐾
iterations: in iterations 1, … ,𝐾𝐾 − 1, we re-train the pruned ANN for 𝜏𝜏 epochs, 
where 𝜏𝜏 ≪ 𝑇𝑇. In iteration 𝐾𝐾, instead, we re-train for 𝑇𝑇 epochs once again.
We call this method Accelerated Iterative Magnitude Pruning (AIMP). Note that
it can be applied in conjunction with both WR and LRR.

Experimenting with (A)IMP + WR
In order to experiment with AIMP and compare its performance w.r.t. IMP, we
decided to train VGG-19 Convolutional Neural Networks (CNNs) on the dataset 
CIFAR10 and to apply AIMP with different values of 𝜏𝜏 for 20 iterations and 𝑝𝑝 =
0.2, comparing it against the same network pruned with IMP applied with the 
same number of iterations.
The values of 𝜏𝜏 selected were 20, 
30, 40, and 50.
Re-training was applied, in all cases, 
with WR.
In the figure, we can see that, 
expectedly, while IMP (upper line) 
shows a high performance 
throughout the pruning,  AIMP 
steadily recovers, while catching up 
with the final performance of IMP. Method Accuracy

IMP + WR 90.64%
AIMP 𝝉𝝉 = 𝟓𝟓𝟓𝟓 90.71%
AIMP 𝝉𝝉 = 𝟒𝟒𝟓𝟓 90.82%
AIMP 𝜏𝜏 = 30 90.39%
AIMP 𝜏𝜏 = 20 90.01%

In the table we have the accuracy of the pruned 
network after 20 iterations of (A)IMP. We can 
see how AIMP with 𝜏𝜏 = 40, 50 beats the 
accuracy of the regular IMP with WR. 
AIMP with 𝜏𝜏 = 40 is 3,47 times faster than the 
regular IMP.

positive param.

negative param.

Training assumptions
We suppose the networks, in all iterations, are (re-)trained using Stochastic
Gradient Descent (SGD).
Moreover, we assume, concerning the unpruned ANN, that:

• it is trained for 𝑇𝑇 epochs
• it is trained using a stepwise Learning Rate (LR) annealing schedule called Λ
• the initial value of the LR is 𝜆𝜆0
• the final value of the LR is 𝜆𝜆𝑓𝑓
• the initial and final configuration of the parameters is called Θ0 and Θ𝑓𝑓, 

respectively

Techniques for re-training
In the recent literature, there exist three established techniques to re-trained a 
pruned ANN effectively:

Recent studies [4] has shown that FT, at high pruning rates, produces pruned 
ANNs consistently worse than WR and LRR as far as accuracy is concerned.

Fine-Tuning (FT) [2]
 Start re-training the surviving parameters from the values Θ𝑓𝑓
 Re-train the pruned ANN for 𝑡𝑡 ≪ 𝑇𝑇 epochs
 Use a fixed LR 𝜆𝜆𝑓𝑓
 Usually not applied iteratively, in conjunction with a high 𝑝𝑝

Weigth Rewind (WR) [3]
 Before re-training, rewind all surviving weights to initial configuration Θ0
 Re-train the pruned ANN for 𝑇𝑇 epochs
 Use the same LR annealing schedule Λ

Learning Rate Rewind (LRR) [4]
 Start re-training the surviving parameters from the values Θ𝑓𝑓
 Re-train the ANN for 𝑇𝑇 epochs
 Use the same LR annealing schedule Λ

Additional experiments
In addition to the experiments presented above, which constitute the bulk of our
work, we experimented with additional configurations:

Reducing the number of epochs of training of the unpruned networks (WR)
 𝜏𝜏 = 50,𝑝𝑝 = 0.2
 Also the unpruned CNN is trained for 50 epochs
 Last re-training is operated for 160 epochs
 Median accuracy = 91,1%

Higher pruning rates (WR)
 𝜏𝜏 = 50
 𝑝𝑝 = 0.3, 12 iterations of (A)IMP 
 𝑝𝑝 = 0.4, 9 iterations of (A)IMP
 No large difference between IMP and AIMP, although accuracies

generally lower than the (A)IMP with 𝑝𝑝 = 0.2 and 20 iterations.

Lower sparsity rates ↔ less iterations of (A)IMP (WR)
 𝜏𝜏 = 50,𝑝𝑝 = 0.2
 Apply (A)IMP for 2, … , 19 iterations
 AIMP can’t keep up to IMP unless sparsity very high

Experiments with (A)IMP + LRR
 𝜏𝜏 = 50,𝑝𝑝 = 0.2
 IMP shows slightly higher accuracy than AIMP (93.68% vs 93.62%)
 In more recent experiments, the gap is higher
 Increasing 𝜏𝜏 does not seem to work

Drawbacks
 We couldn’t find a criterion to identify a good value for 𝜏𝜏 during re-training
 AIMP seems to work only when sparsity rates are very high
 Still some work to do in the comparison with IMP+LRR
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