

Speeding-up pruning for Artificial Neural Networks Presenting Accelerated Iterative Magnitude Pruning

Marco Zullich, Eric Medvet, Felice Andrea Pellegrino (University of Trieste, Italy) Alessio Ansuini (AREA Research & Technology, Trieste, Italy)

Speeding-up IMP

of parameters

We call this method Accelerated Iterative Magnitude Pruning (AIMP). Note that

Experimenting with (A)IMP + WR

In order to experiment with AIMP and compare its performance w.r.t. IMP, we

The values of τ selected were 20,

with WR.

expectedly, while IMP (upper line) throughout the pruning, AIMP

steadily recovers, while catching up

accuracy of the regular IMP with WR. AIMP with $\tau = 40$ is 3,47 times faster than the

Method	Accuracy
IMP + WR	90.64%
AIMP $ au = 50$	90.71%
AIMP $ au = 40$	90.82%
AIMP $\tau = 30$	90.39%
AIMP $\tau = 20$	90.01%

Additional experiments

work, we experimented with additional configurations

- Reducing the number of epochs of training of the unpruned networks (WR)
- $\Box \tau = 50, p = 0.2$
- Also the unpruned CNN is trained for 50 epochs
- Last re-training is operated for 160 epochs
- \Box Median accuracy = 91,1%

Higher pruning rates (WR)

- $\Box \quad \tau = 50$
- p = 0.3, 12 iterations of (A)IMP
- p = 0.4, 9 iterations of (A)IMP
- No large difference between IMP and AIMP, although accuracies generally lower than the (A)IMP with p=0.2 and 20 iterations.

Lower sparsity rates \leftrightarrow less iterations of (A)IMP (WR)

- Apply (A)IMP for 2, ..., 19 iterations
- AIMP can't keep up to IMP unless sparsity very high

Experiments with (A)IMP + LRR

- IMP shows slightly higher accuracy than AIMP (93.68% vs 93.62%)
- In more recent experiments, the gap is higher
- \Box Increasing τ does not seem to work

<u>Drawbacks</u>

Pruning an Artificial Neural Network (ANN)

Pruning can be carried out during or after training, there exist a fair amount of

In this work, we are going to concentrate on pruning after training.

Magnitude pruning removes parameters whose absolute value is low w.r.t. the other parameters

A **pruning rate** $p \in (0,1)$ needs to be fixed which identifies the proportion of

Re-training and iterating

Since, after pruning, it is likely that the ANN accuracy will suffer of some degradation, usually the pruning is followed by a re-training.

Stoppage is performed when (a) the performance of the

The iteration of a magnitude pruning scheme is called Iterative Magnitude Pruning (IMP) [1].

Training assumptions

Moreover, we assume, concerning the unpruned ANN, that:

- the initial and final configuration of the parameters is called Θ_0 and Θ_f ,

Techniques for re-training

- Before re-training, rewind all surviving weights to initial configuration Θ_0 Re-train the pruned ANN for T epochs П

Learning Rate Rewind (LRR) [4]

- Start re-training the surviving parameters from the values Θ_f
- Re-train the ANN for T epochs Use the same LR annealing schedule Λ

Essential bibliography

[1] S. Han et al., "Learning both weights and connections for efficient neural network". [2] Z. Liu et al., "Rethinking the value of network pruning".

[3] J. Frankle & M. Carbin, "The lottery ticket hypothesis: Finding sparse, trainable neural networks".

[4] A. Renda et al., " Comparing fine-tuning and rewinding in neural network pruning".