TWO-STAGE ADAPTIVE OBJECT SCENE FLOW
USING HYBRID CNN-CRF MODEL

Congcong Li, Haoyu Ma, Qingmin Liao*
Tsinghua University
licc18, hy-mal7@mails.tsinghua.edu.cn liaogm@tsinghua.edu.cn

Abstract

Scene flow estimation based on stereo sequences is a comprehensive task relevant to disparity and optical flow. Some existing

methods are time-consuming and often fail in the presence of reflective surfaces. In this paper, we propose a two-
stage adaptive object scene flow estimation method using a hybrid CNN-CRF model (ACOSF), which benefits from
high-quality features and the structured modelling capability. Meanwhile, in order to balance the computational

efficiency and accuracy, we employ adaptive iteration for energy function optimization, which is flexible and efficient
for various scenes. Besides, we utilize high-quality pixel selection to reduce the computation time with only a slight
decrease in accuracy. Our method achieves competitive results with the state-of-the-art, which ranks second on the

challenging KITTI 2015 scene flow benchmark.

[ Method ]

Our ACOSF mainly consists of two stages based on the
hybrid CNN-CRF model. In the first stage, we use CNNs to
obtain initial disparity and optical flow estimation. Then we
integrate the initial results into a CRF-based model.
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Fig. 1. The diagram of the proposed ACOSF scene flow estimation method.

» 3D Geometry and 2D Optical Flow Estimation

In the first stage, the convolutional neural networks are used
to obtain the initial disparity and optical flow estimation, which
are powerful to extract high-quality features for matching and
searching correspondences.

» CRF Model for Scene Flow

In the second stage, we over-segment the reference image
L9. And we follow the assumption in [1] that there are a finite
number of traffic participants moving rigidly. Each planar
region B; in the image is allocated to superpixel s, € S , which
. Each object
O, is associated with a variable m, € SE(3) describing its rigid
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» Efficiency

1) To balance the accuracy and computational efficiency, we
make use of high-confidence matching obtained in the first
stage. The algorithm samples a small number of pixels to
construct the cost volume instead of all pixels in the region B;.
2) Our ACOSF can dynamically adjust the number of
iterations n in the MP-PBP to suit different scenarios by
comparing the continuous variation of the energy function
with the pre-set threshold T.
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[ Experimental Results ]
» Comparison with OSF
OSF Ours
Method DI D2 H S Time
OSF[11] 497 634 654 173 S608s

(CNN-based 301 398 432 575 4675
+LO-RANSAC 292 363 413 548 4813
+adaptive iteration 298 372 422 563 394ls

(a) Inital disparity

Table 1. Results on the validation
portion of KITTI training set. It
validates the improvements of the
two-stage model over the original
OSF algorithm.

(©) First two

Fig. 2. The right row indicates better initial
predictions for optimization. In row (c), we
display the first two proposals of moving
objects to reflect the improvements clearly.

> Comparison with state-of-the-art
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Fig. 3. Comparison of visual results on the KITTI test set .

Methed ot b2 H SE Run Time
"Bz 13 all bg 13 all bg Tz El'l_h_g Tz al

DRISF [33] 16 449 155 290 973 44 359 1040 4T3 1594 631 0.758G)
ACOSF(ours) 79 756 358 382 1274 531 456 1200 AT 551 1938 790 SminiCy
ISF [12] 412 617 446 488 1134 595 540 1029 622 658 1563 BOR 10miniC)
PRSM* [29] 302 1052 427 513 1511 679 533 1340 668 661 2079 B97 SminiC)
OSF+TC* [31] 411 964 503 508 1512 6E4 576 1331 702 708 2003 913 S0miniC)
SSF [37] 355 B75 442 494 1748 702 563 M1 T4 TA8 M58 1007 SminiC)
OSF [11] 454 1203 579 545 1941 777 562 1892 733 701 26M 1023 S0miniC)
DWARF [18] 320 3% 333 621 938 673 980 1337 1039 1172 1806 1278 0.M4-143s(G)
PWOC-3D [34] 419 98 513 721 1473 E46 1240 1573 1296 1430 2266 1569 0.138(G)
CSF [43] 457 1304 598 792 2076 1006 1040 2578 1296 1221 3321 1571 As(C)

Table 2. Results on KITTI 2015 scene flow dataset at the time of submission.
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