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* 1-D convolution neural network with Wavelet Packet Transform
98.8% accuracy

(1. Kao, W. Wang, Y. Lai and J. Perng, “Analysis of Permanent Magnet Synchronous Motor Fault Diagnosis Based on Learning," in IEEE
Transactions on Instrumentation and Measurement)

+ Stacked Autoencoder with softmax layer 96.4% accuracy

(1. Kao, W. Wang, I. Chiang and J. Perng, “Implementation of Permanent Magnet Synchronous Motor Fault Diagnosis by a Stacked
Autoencoder,” 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW))

* Challenges with Deep Learning Algorithms
« Deep Learning methods require large amounts of data
« Algorithms don't generalize with large data

2. Fréchet Inception Distance (FID)
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FID = |lgg — pall? + Tr(Cy + C, — 2(C1Cz)1/2)

pom14 32, kernel_size=1, ReLU. Maspoolimg1d(3]

where, p; and p, are the feature wise
mean

€, and C, are the covariance matrices
And Tr is the trace of the matrix

FID Threshold: 5 x 1E-5
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3. Training Parameters

*  Training Data: 1400 Healthy and 1400 Faulty Current Signals
»  Sampling Frequency: 100 Hz

*  Learning rate of 0.0002 and beta of 0.5

» Discriminator Loss Function: binary cross-entropy

+  Generator Loss Function: sparse categorical cross-entropy

*  Adam Optimizer

4. 1d DCGAN Architecture
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5. Generated Results
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6. Evaluation of results
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« Creativity: The generated signals are not duplicates of the real
signals.
« Diversity: The generated signals are not duplicates of each other.

SSIM( _ Quxpy+c)(oxy+cz) m

X, y) T (w24 u2 24 52 i ity = — Bt .
(Hg+u5+cy) (0F+03+c2) Diversity = pilogp;

iy is the mean value of x i=1

1y is the mean value of y where, p; = |C;|/Zn41Cnl

a? is the variance of x m is the number of clusters

a3 is the variance of y |C;| is the number of signals in the cluster
axyis the covariance of x and y wherei=1,....m

¢ = (kiL)* and c; = (kpL)? are the variables to
stabilize to the division with weak denominator Number of Nonduplicate Signal

In our case k, = k, = 0.05, and L is the dynamic range  Creativity = oo mer e 1 he generated dataset|
of the signal value

1d DCGAN trainedon | 1d DCGAN trained | Optimal values for
Healthy signals on Faulty signals | 10000 signal dataset

Creativity 1 1 1
Diversity 9.0 8.7 9.2

7. Conclusion

« 1d signals generation using DCGAN

« Evaluation using FID distance

* Further evaluation using Creativity and Diversity

 Generated Signals are statically rich and are uncorrelated to the real
signals
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* 1-D convolution neural network with Wavelet Packet Adam Optlmlzer _
Transform 98.8% accuracy 9. Further Evaluation of Results

(I. Kao, W. Wang, Y. Lai and J. Perng, "Analysis of Permanent Magnet Synchronous Motor Fault
Diagnosis Based on Learning," in IEEE Transactions on Instrumentation and Measurement)

Stacked Autoencoder with softmax layer 96.4% accurac : * Creativity: The generated signals are not duplicates of the real signals.
(1. Kao, W. Wang, I. Chiang and J. Perng, "Implementation of Pzimanent Magneg Synchronous Y 5 Generator ArChIteCtu re 7 Generated Data ° DiverSity: The generatEd Signals are not dUpliC&teS of each other.

Motor Fault Diagnosis by a Stacked Autoencoder,” 2018 IEEE International Conference on 1
Consumer Electronics-Taiwan (ICCE-TW)) 7~ N(0,1)
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