Semantic Segmentation Refinement Using Entropy and Boundary-guided Monte Carlo Sampling and Directed Regional Search

Zitang SUN, Sei-ichiro KAMATA and Ruojing WANG **Key words:** Semantic Segmentation, Deep learning, Image Processing

Motivation

- **Situation in Semantic Segmentation:** Although existing methods based on a fully convolutional network have greatly improved the accuracy, the prediction results still do not show satisfactory on small objects and boundary regions.
- CNN's Shortcoming: Overdownsampling thus losing details
- Proposal: In this work, we propose an Information Entropy and Boundary-guided Refinement (EBR) algorithm to improve the coarse results generated by front CNN

Overview

Cross Gated Network

Image Backbone Segmentation mask Boundary Stream Cross Gated Unit (GCU) boundary Refinement Algorithm

Inspired by Gated-SCNN[4], we added an extra branch to the original backbone to get the semantic boundary in advance

Competition result

- Dataset: Cityscapes[2], PASCAL VOC 2012[1]
- Evaluate metric: Intersection over Union (IOU)
- Result comparison

	Cityscapes		PASCAL VOC 2012	
Method	Orignal	+EBR	Orignal	+EBR
DANet[6]	82.0	82.5	77.3	79.1
PSPNet[6]	80.9	82.0	79.1	78.9

Conclusion

- In this work, we analyze the information entropy of the final classification from the front network and propose an entropy and boundary-guided refinement (EBR) algorithm to improve the segmentation accuracy significantly on small objects.
- Reference

[1] M. Everingham, L. Van Gool et al. The pascal visual object classes (voc) challenge. In IJCV, 2010. [2] M. Cordts, et al., "The cityscapes dataset for semantic urban scene understanding," abs/1604.01685, 2016. [3] H. Zhao, J. Shi, X. Qi, X. Wang et al. Pyramid scene parsing network, In CVPR, 2017. [4] Towaki Takikawa et al. Gated-SCNN: Gated Shape CNNs for Semantic Segmentation, in ICCV 2019. [5] Jun Fu, Jing Liu, et al., Dual Attention Network for Scene Segmentation, in CVPR 2019. [6] H. Zhao, J. Shi et al. Pyramid scene parsing network, in CVPR 2017.