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Affective Expression vs. Expressiveness

Pain expression sequence. Neutral to low to high level pain

MGL 8.4

Motivation

-> Beyond expression, we need to understand the expressivity
=> Unstructured visual expression data to structured data
=> Making visual expression analysis accessible
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TED based Visual Affect Analysis Framework

Get visual dataset

Track facial features (facial action units, landmarks, headpose, gaze)
Compute TED on tracked features

High level tasks
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Proposed Affective Expressiveness Algorithm (TED)

Step #1. Compute static expressiveness emphasizing on the n
high intensity action units (AUs) S = Z B
1

Step #2: Capture dynamics by computing . . i
relative changes in AUs, landmarks, C. - { et if var(f;) +var(fiy1) =
headpose & eyes’ gaze

otherwise

var(fi)+var(fiy1)

D, — {+1 if 3 [fin — fi] 20

—1 otherwise

Step #3: Compute average changes using ML Y D,xC
rolling window w &~ 0

Step #4: Expressiveness in a given
moment of time combining static &
dynamic expressiveness

Score = S;x [1 + My * My, « My, x Mg, * Mg, * M/]
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Example: Quantified expressiveness of pain affect

E1 - Expert (human) coded AUs were used in experiments
E2 - ML model predicted AUs were used in experiments

Expressiveness dynamics for a given pain sequence
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TED based pain expressiveness is strongly correlated
with PSPI scale scored pain level

Comparison: Expressiveness (TED) scores vs. PSPI pain scores
Experimented dataset: UNBC-McMaster shoulder pain dataset (IEEE FG 2011)
Evaluation metric: PCC (Pearson correlation coefficient). Higher is Better.
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.
Pain frames are likely to be outlier as high scored
self-reported pain sequences may contain very few
highly expressive pain frames

Sequence level pain expressiveness analysis using self-reported pain
scores (VAS)
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Observer reported pain scores go up, expressiveness
scores go up as well. Observers pay attention to the
visual facial responses of pain.

Sequence level pain expressiveness analysis using observer reported
pain scores (OPI)
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Strong association between expressiveness scores &
model confidence

Pain detection using random forests. Performance: 0.86 F-measure

True Positive (Success) True Negative (Success)
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Pain detection model made mistakes in gray area
(low pain intensity pain frames, i.e. neutral is similar

to pain samples)

False Positive (Failure) False Negative (Failure)
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Summary

=> Quantifying facial expressiveness at video frame level
=> Automated unstructured affective data analysis
-> Better predictive modeling via additional expressiveness analysis
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Thanks for watching :)

- Email: mdtaufeeg@usf.edu
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