
A modified Single-Shot multibox Detector for beyond Real-Time Object Detection 

Georgios Orfanidis†, Konstantinos Ioannidis†, Stefanos Vrochidis†, Anastasios Tefas∗ and Ioannis Kompatsiaris† 
of Thessaloniki 

Aims & Objectives 

Object detection remains a fundamental problem in computer vision 
Objective: localize (provide a bounding box) and identify (provide a label) for 
objects of interest inside and image. 

 
 
 

Solution: Convolutional Neural Networks (CNN) lead to huge improvements 
Typical State-of-the-Art models are computationally expensive  
Restricted integration on systems with limited resources. 
Lighter versions have emerged: Tiny-YOLO, SqueezeDet, MobileNet-SSD 

Current work is based on standard Single Shot Detector (SSD) architecture 
Relies on simple conv3x3 filters 

Related work 

Object detection is divided into two major categories based on the potential use 
of a Region Proposal Network (RPN): 

the single phase detectors and 
•SSD, YOLO, YOLOv2, Retinanet etc 

the two-phase detectors 
 Fast R-CNN, Faster R-CNN and R-FCN 

Another categorization regarding the object detection models' purpose: 
state-of-the-art performances with no resource restrictions 
best performance in  resource restricted environments 
It is almost exclusively dominated by the single-phase detectors due to 
the efficiency they inherently possess 

Proposed method 

Original SSD modifies VGG network. 
 VGG is a robust network but: 

Uses huge number of parameters, nonetheless 
Has limited use in resource-restricted applications. 

SSD suffers in identifying small objects. 
The shallowest layer which is being used is conv4_3 of VGG 
typical input size 300x300 → corresponds to a 38x38 feature map 
too small to identify objects 

SSD includes 10 blocks of CNNs in order to extract features. 
 first 6 blocks belong to the VGG 
each next block has double the filters of the previous one 
The initial number of filters is 64 for the 1st block. 

We added an extra shallower decision layer at conv3_3 
with 75x75 feature map 
number of default boxes number 8732 →  31232 
Are shallower features discrimant enough? 

Decreased both the initial number of filters as well as exponent for increase for 
the next blocks. 
Formula for filter blocks: 

kn = ban 

Initial numbers of filters, parameter b, 48 and 32 were examined 

parameter a was fixed to 1.7 (from 2 to the original VGG) 
 

Number of filters used in the various adaptations 
 
 

Proposed method - Adjusted loss classification weights 

Compensate for unbalanced datasets 
 Modified version of SSD classification loss function  

different weight coefficients for different classes 
KITTI dataset: 

loss = wped*lossped+wcycl*losscycl+wcar*losscar 

wped = 2.2, wcycl = 2.0, wcar = 1.0 
 Pascal Voc dataset: 

loss = w1*loss1+...+w20*loss20 

wi =  
Improves performance for classes of lower overall 
performance 

Proposed method - Selecting the proper decision layers 

SSD deployed 6 decision layers 
They are used to extract discriminant features. 
Each one with different feature map size. 
The deepest layer is useful for bigger objects only. 

They do not appear in KITTI 
Are non frequent in Pascal 

Formation of SSDx7 
1 additional shallower decision layer 
Better performance in KITTI 
Decreased performance In Pascal Voc 

Formation of shallower SSDx6  
1 additional shallower decision layer used. 
1 deeper layer being removed 

Formation of shallower SSDx5 
1 additional shallower decision layer  
2 deeper layers were removed 
Only well performing in KITTI 

Formation of SSDx5  
1 deeper layer was removed 
Only well performing in Pascal Voc 

Formation of SSDx4  
1 deeper layer was removed 
1 shallower layer was also removed 
Only performing well in Pascal Voc 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Experimental results - Balancing the dataset 

Experiments were conducted in Pascal Voc and KITTI datasets 
Both datasets are imbalanced. 
 Repeat images containing objects from misperforming classes 
Useful for KITTI not for Pascal 

 
 
 

Balancing dataset did not work for Pascal Voc only for KITTI 
The repetition of images also incorporate objects of the majority class 
Pascal Voc is a more complex dataset with 20 classes compared to 
KITTI, which involves only 3 classes. 

Might improve the performance of some classes but decrease the 
performance for the remaining classes.  

 

Experimental results - Pascal Voc 2007 

Full model: 
Incorporating an additional shallower layer did not increase the 
performance. 
Weighted version of SSDx6, SSDx5 and SSDx6 all tie at 77.6% 
Performance of 3 worst classes did improve on Weighted version. 

Medium model: 
Removing shallower layer did not improve the overall performance 
(almost 5% compared to baseline). 
Inclusion of Last layer did not affect the results. 
Weighted version of SSDx4 model demonstrated best performance at 
71.0% mAP. 

Lighter model: 
Removing shallower layer improved performance (4% compared to 
baseline). 
Last layer do not affect results. 
Weighted version SSDx4 model demonstrated best performance at 
64.1% mAP 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Various light-weight models' performance on Pascal Voc 2007 test set: 
 
 
 
 
 
 
 

Experimental results - KITTI 

Full model: 
A balanced dataset was used. 
Additional shallower layer improved the performance significantly. 
Shallower SSDx5 was used. 
Weighted version of shallower SSDx5 demonstrated best performance 
with mAP 86.1%. 

Medium model: 
Balancing the dataset improved to a point (best choice additional 1.5x 
of the original samples). 
Additional shallower layer improved performance significantly 
(50%+). 
Weighted version of shallower SSDx5 demonstrated best performance 
at 84.1% mAP. 

Lighter model: 
Using a balanced dataset. 
Weighted version of shallower SSDx5 demonstrated best performance 
at 81.1% mAP. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Performance of various light-weight models in KITTI 
 
 
 
 
 
 

Experimental results – Computational performance 

 Efficiency comparison with other lightweight models: 
Reported times are indicative due to hardware differences 
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5. CONCLUSION 

Light-weight versions of the SSD architecture were examined. 
Two widely used datasets were utilized: Pascal Voc & KITTI. 
SSD remains competitive even when many of the original filters were removed.  
Decision layer selection affected significantly the performance especially on lighter 
versions. 
Effectiveness drop counter-measures proved useful: 

Class weights manipulation played an important role. 
A balanced dataset also improved performance (only in KITTI). 
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