Progressive Scene Segmentation Based on Self-Attention Mechanism

Abstract: semantic scene segmentation is vital for a large variety of applications as it enables understanding of 3D data. Nowadays, various approaches based upon point clouds ignore the mathematical distribution of points and treat the points equally. The methods following
this direction neglect the imbalance problem of samples that naturally exists in scenes. To avoid these issues, we propose a two-stage semantic scene segmentation framework based on self-attention mechanism and achieved stateof-the-art performance on 3D scene understanding
tasks. We split the whole task into two small ones which efficiently relief the sample imbalance issue. In addition, we have designed a new self-attention block which could be inserted into submanifold convolution networks to model the long-range dependencies that exists among
points. The proposed network consists of an encoder and a decoder, with the spatial-wise and channel-wise attention modules inserted. The two-stage network shares a UNet architecture and is an end-to-end trainable framework which could predict the semantic label for the scene
point clouds fed into it. Experiments on standard benchmarks of 3D scenes implies that our network could perform at par or better than the existing state-of-the-art methods.

1.Two-Stage submanifold convolution network

1.1 Overall Architecture

We split the whole task into two small ones, which makes the segmentation task much
easier. The building such as wall and floor exist in most scenes could be regarded as the
background, therefore, the other object exist in the scene defined as foreground. In order to
Improve the performance of the segmentation, we first separate the background from the
scene so that the segmentation in next stage would be much more concise. Combining the
results of two stage segmentation, finally we get the semantic segmentation result of the
whole scene. The framework we designed is a twostage decomposition framework which
consumes voxelized point clouds of a 3D scene as input and output the semantic labels
corresponding with the input points. Figure 1 shows the overall architecture of our
framework.
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Fig. 1. Overall architecture of the two-stage submanifold sparse convolution network based on self-attention mechanism

1.2 Stage-1

In stage 1, we extracts points that belongs to *background’ from the complete scene. As a
result, the original scene point clouds split into two separated ones. The one only consist
of ’background’ points, while the other consist the rest of the point clouds. We designed a
U-Net architecture which consist of an encoder and a decoder. Both of the encoder and the
decoder composed of several sparse convolution operators. The encoder encodes the point
features by continuous sparse convolution and submanifold sparse convolution blocks
which are inserted into the interval of convolution operations that used for keeping the
sparsity among the convolutions. The basic building blocks for our framework are pre-
activated residual blocks that contain two submanifold sparse convolution SSC(5 5 3)
where filter size i1s 3. Each convolution is preceded by batch normalization and a ReLU
non-linearity. We use seven level convolutions accompanied by two pre-activated residual
blocks each level in the downsampling process. The attention blocks of both spatial and
channel domains are inserted into the last level of convolution block. The decoder just
conduct the inverse operations combining with the features which come from the skip
connections. In this stage, we use a sparse voxelized input representation similar to [29],
and a combination of SSC operations and strided SC convolutions to construct sparse
variants of the U-Net networks. we process the original scene point clouds and split it into
several class including *background’ and the others

1.3 Stage-2

In stage 2, Obtaining the remaining point clouds from the first stage, we feed them into the
same U-Net in stage 1. In this stage, we will get the semantic labels for the remaining point
clouds. Summarize the two stage semantic segmentation results, finally we assign semantic
labels to the scene point clouds that fed into our framework. Combining the result of two
stages, we will get the semantic labels of all point clouds.

2. Self-Attention Block

2.1 Overall Attention Block

Since convolution operations would lead to a limited local receptive field, the features corresponding to the
points with same semantic label may have some differences. These differences would bring some noises to
the final linear layer, which affects the segmentation accuracy. To address this problem, we find a way to
build global associations among features with attention mechanism. The framework we designed could
efficiently aggregate long-range contextual information and non-linearity relationship between channels, thus
Improving the feature representation for 3D scene segmentation. As shown in Figure 2, we design two types

of self-attention modules.
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Fig. 2: Spatial-wise and channel-wise self-attention block

1.2 Spatial Attention Module

Discriminant feature representation is the most fundamental things for scene
understanding. However, the result of many works imply that there are some limitations in
extracting local features only. The feature captured by stacked convolution block may lead
to misclassification of the objects. To model long-range dependencies over local features,
we proposed a spatial attention module. The spatial attention module enhance the feature
representation by re-weighting local features according to its correlations. The details of
the module could be found in Figure 3

1.3 Channel Attention Module

It 1S not Intuitive to clearly explain the relationship between channels, but there are
nonlinear relations exist in high dimensions obviously. By reweighting the channel maps,
we could strengthen useful channels and ignore the noises from additional channels.
Therefore, we have proposed attention module which is a channel filtering module that
models the interdependencies between channels. The details of the module could be found
In Figure 4
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Fig. 3: Spatial-wise self-attention block Fig. 4. Channel-wise self-attention block

3. Results

2.1 Experiments on ScanNet & S3DIS

we first introduce the basic experiments settings that we adopt. Then we provide analysis experiments to
understand the significance of the progressive segmentation. Finally, we show qualitative results of our
method. To validate the proposed framework, we use standard 3D scene benchmarks for 3D semantic
segmentation. It makes our methods easier to compare with the others.
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Fig. 6: Visualization of ScanNet validation
results. From the top, RGB input (a), ground
truth (b), our result (c).

Fig. 5: Visualization of Stanford dataset
Area 5 test results. From the top, RGB input
(a), ground truth (b), our result (c).

TABLE I: Comparison with State-of-the-art on ScanNet validation set
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TABLE II: Stanford Area 5 Test (Fold 1) (S3DIS)
TABLE III: Result of the network under different parameters

Method mlOU  mAcc
PointNet [1] 31.00 18 08 on ScanNet val set.

SparseUNet [30] 41.72 64.62
SegCould [10] 4892 5735 Framework | Scale  Attenton-block Two Stage | mlOU
TangentConv [31] 528 60.7 S5CN 20 0614
3D RNN [32] 534 71.3 ASSCN 20 v 0.622
PointCNN [3] 57.26 63.86 PSSCN 20 ¥ 0.632
SuperpointGraph [33] 58.04 66.5 ours 20 W " 0.635
GACNet [26] 62.85 87.79 SSCN 50 0.708
MinkowskiNet [7] 65.35 71.71 ASSCN 50 o 0.710
SparseConvNet [6] 66.7 - PSSCN 50 J 0.713
Ours(without attention module) 69.5 - ours 50 v v 0.715

Ours 70.9
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