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ENTC Feature-Dependent Cross-Connections in IIIII

Rich Layer-wise Feature Extraction by Multi-paths

Feature-Dependent Cross-Connections

e Neural network deepening is well established to learn complex tasks.

e However, there is still room for powerful feature extraction within layers.

e As opposed to conventional widening, having parallel computations in neural layers
improve the efficiency with respect to the number of parameters.

e However, context-dependent allocation of resources in a layer has not been explored
Color

a) Hummingbird b) Hummingbird c) Electric Eel

3 ImageNet images, Two Hummingbirds and one Electric Eel

a and b similar in pose (abstract detail). b and ¢ similar in overall color (low detail).
Image context is distributed along the depth of a neural network.

In a multi-path network, the nature of resource allocation may change with the depth.
Therefore, It is intuitive to learn to allocate parallel resources separately, layer-wise.

In this way, b and ¢ may get similar resource allocation in initial layers, a and b may
get similar resource allocation in deeper layers.
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e Here, we show a two path CNN with adaptive cross-connections inserted at selected
locations. The cross-connections are weighted by gates which are computed from
the input tensors themselves. Connecting (X1,X2) to (Y1,Y2) is described below.

e We feed X to global average pooling, followed by non-linear parametric computation
which outputs two gates, the probabilities of X being routed to Y1 and Y2.

e The output Y is constructed by summing the Xs which are weighted by the
corresponding gates.
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Routing diagrams. Input/output tensor strengths are denoted in red intensity.
Gate/connection strengths are shown by blue intensity of circles and connenction width

Visualizations
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Synthesized image to
maximize the gate

e We chose two gates to study the gating patterns. Shallow gate, Deeper gate.

e The shallow gate is maximized for b and ¢, although they are two classes. It shows a
lower activation for a. The highest activated images contain blue color. The synthesized
image that maximizes the shallow gate also contains a consistent blue color.

e The deeper gate is maximized for two hummingbirds a and b. It shows a lower activation
for the electric eel (c). The maximally activated images are all birds. The synthesized
image also contains bird patterns.
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o We further plot gate histograms of parallel computations in selected layers.
e The histograms of parallel computations are distinct. This confirms that parallel
computations learn distinct features.

Conclusion

o We selectively introduced adaptive cross-connections between successive pairs
of layers in a multi-path network, to group similar feature maps into parallel
paths and learn a soft routing between them.

e Our multi-path networks are capable of surpassing state-of-the-art adaptive
image classifiers and conventional single path networks of increased width or
depth which are of similar or even higher complexity.

e Having parallel paths with adaptive cross-connections is a good alternative to
improve neural network performance under resource constraints.




