

Feature-Dependent Cross-Connections in Multi-Path Networks

Dumindu Tissera**, Kasun Vithanage**, Rukshan Wijesinghe**, Kumara Kahatapitiya*, Subha Fernando*+ and Ranga Rodrigo* ⁺CODEGEN QBITS Lab

*University of Moratuwa

Sri Lanka

Rich Layer-wise Feature Extraction by Multi-paths

- Neural network deepening is well established to learn complex tasks.
- · However, there is still room for powerful feature extraction within layers.
- As opposed to conventional widening, having parallel computations in neural layers improve the efficiency with respect to the number of parameters.
- However, context-dependent allocation of resources in a layer has not been explored

• 3 ImageNet images, Two Hummingbirds and one Electric Eel

- a and b similar in pose (abstract detail). b and c similar in overall color (low detail).
- Image context is distributed along the depth of a neural network.
- In a multi-path network, the nature of resource allocation may change with the depth.
- Therefore, It is intuitive to learn to allocate parallel resources separately, layer-wise.
- In this way, b and c may get similar resource allocation in initial layers, a and b may
- get similar resource allocation in deeper layers.

Feature-Dependent Cross-Connections

- Here, we show a two path CNN with adaptive cross-connections inserted at selected locations. The cross-connections are weighted by gates which are computed from the input tensors themselves. Connecting (X1,X2) to (Y1,Y2) is described below.
- We feed X to global average pooling, followed by non-linear parametric computation which outputs two gates, the probabilities of X being routed to Y1 and Y2.
- The output Y is constructed by summing the Xs which are weighted by the corresponding gates.

Image Recognition Domain

CIFAR10 and CIFAR100 CNN and ResNet based Nets

Compared Network Details (Cn Convolution Fn Dense)					
Network	Structure				
BaseCNN	C32 C32 C64 C64 C128 C128 F32 F32 F10				
WideCNN	C64 C64 C128 C128 C256 C256 F32 F32 F10				
DeepCNN	$C32 \ C32 \ C64 \ C64 \ C128 \ C128 \ C128$				
	$C256 \ C256 \ C256 \ F32 \ F32 \ F10$				
BaseCNN Ensem	ble Ensemble of 3 BaseCNNs				
All Ensemble	Ensemble of BaseCNN, WideCNN and DeepCNN				
SENet	SENet on BaseCNN and DeepCNN				
Cr-Stitch2	Cross-stitch network with 2 parallel BaseCNNs				
BaseCNN-X	BaseCNN - X paths with adaptive cross-connections				
ResNet-X	ResNet - X paths with adaptive cross-connections				

Ablation study in CIFAR10 - CNN based networks

Network	Params (M)	Error %	
BaseCNN/WideCNN/DeepCNN	0.55/1.67/2.0	9.26/8.96/8.49	
BaseCNN Ensemble	1.66	7.87	
All Ensemble	4.27	6.9	
SEBaseCNN/SEDeepCNN	0.58, 2.06	8.99,8.15	
Cr-Stitch2	1.11	7.89	
VGG16	14.9	6.98	
BaseCNN-2	1.11	7.03	
BaseCNN-3	1.67	6.51	
BaseCNN-4	2.22	6.55	

Routing diagrams. Input/output tensor strengths are denoted in red intensity.

Network	Params (M)	CIFAR10	CIFAR100	
ResNet20/110/164	0.27/1.7/2.5	8.75/6.61/5.93	-/26.88/25.16	
WRN-40-2	2.2	5.33	26.04	
SEResNet110	1.7	5.21	23.85	
BlockDrop	1.7	6.4	26.3	
ConvNet-AIG	1.78	5.76	-	
ConvNet-AIG all	1.78	5.14	-	
ResNet20-2 Ours	0.55	5.5	27.36	
ResNet20-3 Ours	0.82	5.18	25.76	
ResNet20-4 Ours	1.1	4.96	24.81	
ResNet32-2 Ours	0.94	5.14	25.96	
ResNet32-3 Ours	1.41	4.96	24.51	
ResNet32-4 Ours	1.88	4.59	23.52	
Sabour et al.	8.2	10.6	-	
Highway	2.3	7.54	-	
HyperNetworks	0.15	7.23	-	
BaseCNN-2/3/4 Ours	1.11/1.67/2.22	6.53/6.09/6.26	-	

ILSVRC2012 (ImageNet) ResNet based Nets							
Network	Params(M) Si		Single-Crop		10-Crop		
		Top-1	Top-5	Top-1	Top-5		
ResNet18	11.7	30.4	10.93	28.22	9.42		
ResNet34	21.8	26.77	8.77	24.52	7.46		
WRN-18-1.5	25.9	27.06	9.0				
ResNet18-2 (Ours)	23.4	26.48	8.6	24.5	7.34		

Visualizations

- We conduct experiments in both small scale and large scale image recognition datasets
- We test multi-path CNNs and multi-path ResNets
- Overall, our networks surpass, conventional widening, model ensembles, existing adaptive feature extraction methods and even deeper networks with similar or less number of parameters.

- The shallow gate is maximized for b and c, although they are two classes. It shows a lower activation for a. The highest activated images contain blue color. The synthesized image that maximizes the shallow gate also contains a consistent blue color.
- The deeper gate is maximized for two hummingbirds a and b. It shows a lower activation for the electric eel (c). The maximally activated images are all birds. The synthesized image also contains bird patterns.
- image classifiers and conventional single path networks of increased width or depth which are of similar or even higher complexity.
- Having parallel paths with adaptive cross-connections is a good alternative to improve neural network performance under resource constraints.