TJ Tampere University Iterative Bounding Box Annotation for Object Detection

Bishwo Adhikari & Heikki Huttunen

Background

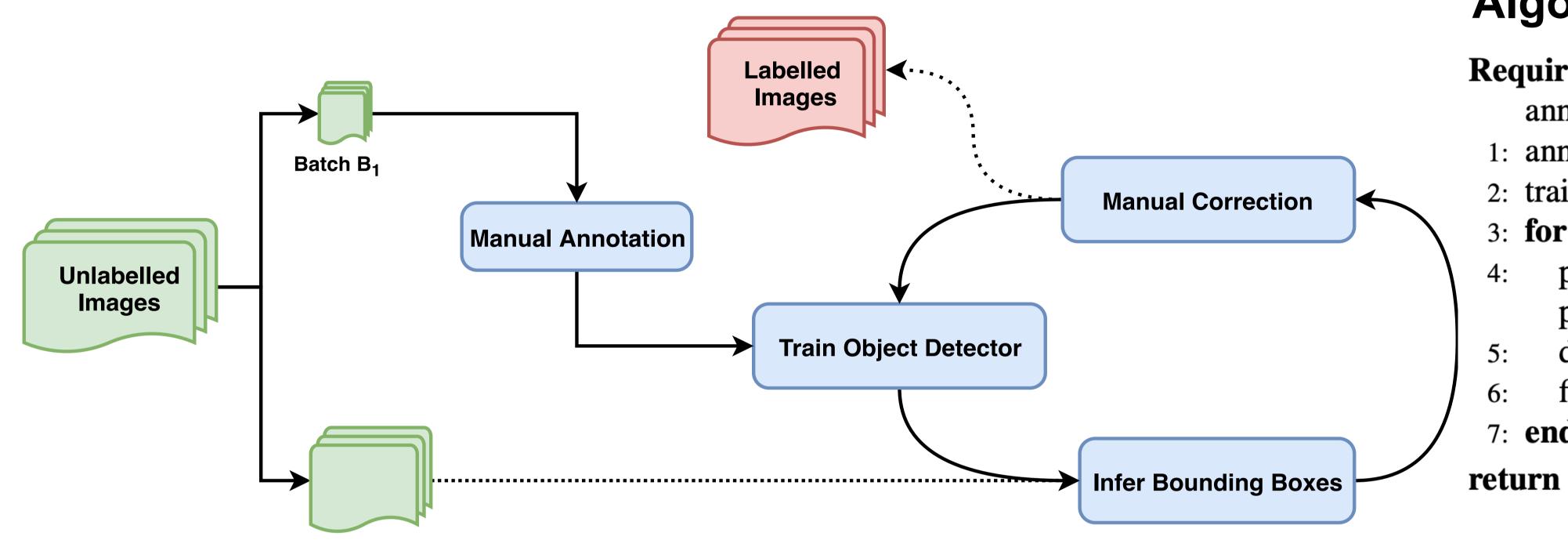
- > Supervised object detection requires large amount of labelled data for training.
- > Labelling object class and location in image dataset is tedious, error prone and time consuming.
- > Publicly available datasets are good to have but

Contributions

- > We present iterative train-annotate approach for the bounding box annotation.
- \succ It takes advantage of the trained model to propose labels for a batch of unlabeled images leaving the annotator only for correction work.
- \succ Experiments shows its effectiveness.

not enough for environment specific detector.

Method



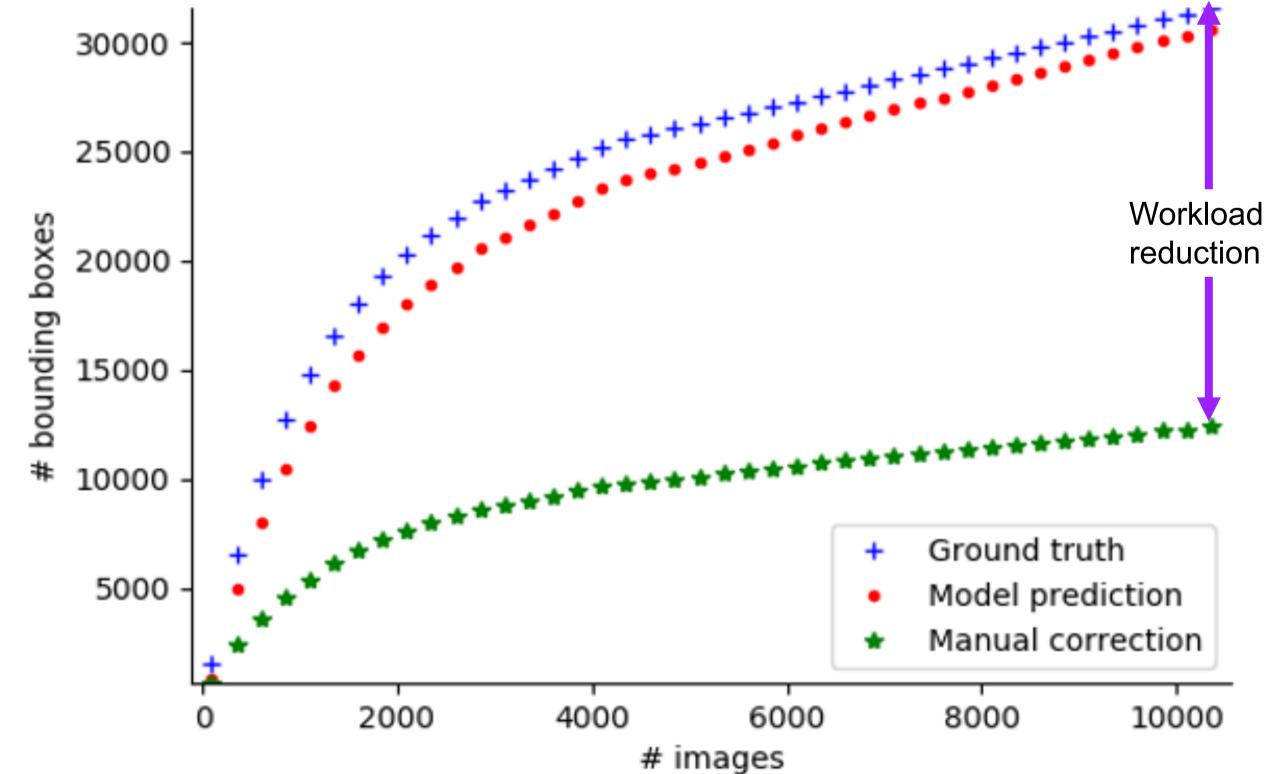
Algorithm: Iterative annotation

Require: Set of unlabeled images split to M + 1 distinct annotation batches B_0, \ldots, B_{M+1} 1: annotate images in batch B_0 manually 2: train object detection model with images from B_0 3: for $i \in 1, 2, ..., M$ do propose annotations for batch B_i using the current prediction model do manual correction for the proposals fine-tune the object detection model with batch B_i 7: **end for**

return fully labeled dataset

Batches B₂ ... B_{M+1}

Fig 1: Iterative annotation method



Experiments & Results

- > Dataset: we use Indoor [1], Pascal VOC 2012 and OpenImages v4 dataset
- Netowork: SSD MobileNet and Faster RCNN
- \succ Selection strategy: we use temporal (original), shuffle and sorted order to sort images in mini batches

Table 1: Annotation workload reduction (%) in 3 datasets

Network - Approach	Indoor	PASCAL VOC	OpenImages Person		
RCNN - Shuffled	75.86	18.40	45.62		
RCNN - Sorted	56.97	20.93	60.05		
RCNN - Original	35.78	25.23	45.73		
SSD - Shuffled	47.38	3.46	20.28		
SSD - Sorted	31.58	5.66	35.13		
SSD - Original	19.24	7.97	20.04		

Fig 2: Workload reduction on OpenImages person dataset using sorted order

> **Table 3:** Workload reduction in Indoor dataset with two-stage method [1] & ours

Approach	Reduction (%)				
Two-stage (5%) [1]	79.47				
Two-stage (6%) [1]	81.21				
Two-stage (8%) [1]	78.68				
Two-stage (10%) [1]	79.03				
Two-stage (20%) [1]	72.46				
Ours (iterative)	79.56				
Ours (cumulative)	80.56				

Table 2: Annotation workload reduction (%) in Pascal VOC single class case

	Airplane	Bird	Boat	Bottle	Car	Cat	Chair	Dog	Person	Plant	Average
RCNN - Shuffled	56.14	50.30					29.31	57.87	44.61	38.72	46.44
RCNN - Sorted	62.07	60.43	35.65	46.68	56.27	59.53	32.44	63.28	61.24	32.75	51.03
RCNN - Original	53.87	50.41	32.50	41.54	55.14	61.58	29.30	61.38	57.16	34.64	47.75

Conclusion

- \succ Iterative annotation is efficient, easy to use and reduces most of the tedious manual work.
- \succ With this method, single annotator can efficiently annotate whole dataset for object detection training.

Reference

[1] Adhikari et al., "Faster Bounding Box Annotation for Object Detection in Indoor Scenes," EUVIP, 2018.

