

Investigating and Exploiting Image Resolution for Transfer Learning-based Skin Lesion Classification

Mahbod A¹, Schaefer G², Wang C³, Ecker R⁴, Dorffner G⁵, Ellinger I¹

¹ Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
² Department of Computer Science, Loughborough University, U.K
³ Department of Biomedical Engineering and Health System, Division of Biomedical Imaging, KTH Royal Institute of Technology, Stockholm, Sweden
⁴ Department of Research and Development, TissueGnostics GmbH, Vienna, Austria
⁵ Section for Artificial Intelligence and Decision Support, Medical University of Vienna, Vienna, Austria

Research questions

Using pre-trained convolutional neural networks (CNN) for skin lesion classification requires down-sampling, but:

What is the proper down-sampling factor?

- ❖ Using resized images with a size of larger than 128 x 128 → comparable results (89.42% to 92.37% for ResNet-18)
- ✤ Using resized images with a size of 64 x 64 → significant drop in performance (84.21% for ResNet-18)
- ✤ Increasing size → slight improvement in performance (from 89.31% to 91.44% on average for all networks)

Is it useful to exploit images with different sizes for fine-tuning?

Method

Datasets (contained three skin lesion types)

Malignant Melanoma (MM)

Seborrheic Keratosis (SK) Benign nevi (BN)

- Subset of ISIC archive [1] for training and validation data
 - Training Data: 2,187 images including training, validation and test images of ISIC 2016 competition as well as training and validation set of ISIC 2017 competition
 - □ Test Data: 600 test images from ISIC 2017 competition
- Reporting results for MM vs. all and SK vs. all classifications
- Pre-processing
 - Gray world color constancy normalization
 - ImageNet mean subtraction
 - Resizing (ranging from 64 x 64 to 768 x 768)
 - Data augmentation by rotation and flipping

- ✤ Fusing is the best → using multi fine-tuned CNNs and using images with different resolutions for training (92.86%)
- Fine-tuning 3 pre-trained CNNs, namely ResNet-18 [2], ResNet-50 [2] and DenseNet-121 [3]
- Three-level fusion approach

Results

Size effect on the performance for ResNet-18 (level one fusion)

Size	MM AUC (%)	SK AUC (%)	Avg. AUC (%)
64 x 64	78.86	89.55	84.21
128 x 128	85.46	93.39	89.42
224 x 224	85.37	93.81	89.59
448 x 448	89.20	95.54	92.37
768 x 768	88.89	95.85	92.37

References:

[1] https://isic-archive.com/

[2] He et al: Deep Residual Learning for Image Recognition, CVPR, 2016

**	Effect of	level two	and level	three	fusion
----	-----------	-----------	-----------	-------	--------

Network	Sizes	MM AUC (%)	SK AUC (%)	Avg. AUC (%)
Fusion of ResNet-18	all	89.12	96.26	92.69
Fusion of ResNet-50	all	88.50	96.03	92.27
Fusion of DenseNet-121	all	87.69	95.77	91.73
Three-level fusion	all	89.16	96.57	92.86

Comparison to the state-of-the-art methods

Network	Sizes	MM AUC (%)	SK AUC (%)	Avg. AUC (%)
Matsunaga et al. [4]	NA	86.8	95.3	91.1
Mahbod et al. [5]	224	87.3	95.5	91.4
Zhang et al. [6]	224	87.5	95.8	91.7
Yan <i>et al.</i> [7]	256	88.3	NA	NA
Three-level fusion	all	89.16	96.57	92.86

Acknowledgement

[3] Simonyan et al: Densely Connected Convolutional Networks, CVPR, 2017

[4] Matsunaga et al: Image classification of melanoma, nevus and seborrheic keratosis by deep neural network ensemble, arXiv, 2017

[5] Mahbod et al: Fusing Fine-Tuned Deep Features for Skin Lesion Classification, CMIG, 2019

[6] Zhang et al: Attention residual learning for skin lesion classification, IEEE TMI, 2019

[7] Yan et al: Melanoma recognition via visual attention, IPMI, 2019

