Relatable Clothing: Detecting Visual Relationships between People and Clothing

Thomas Truong, Svetlana Yanushkevich Department of Electrical and Computer Engineering

Abstract

Detecting visual relationships between people and clothing in an image has been a relatively unexplored problem in the field of computer vision and biometrics. The lack of readily available public dataset for ``worn" and ``unworn" classification has slowed the development of solutions for this problem. We present the release of the Relatable Clothing Dataset which contains 35,287 person-clothing pairs and segmentation masks for the development of ``worn'' and 'unworn'' classification models. Additionally, we propose a novel soft attention unit for performing ``worn" and ``unworn" classification using deep neural networks. The proposed soft attention models have an accuracy of upward 98.55% \pm 0.35% on the Relatable Clothing Dataset and demonstrate high generalizable, allowing us to classify unseen articles of clothing such as high visibility vests as ``worn'' or ``unworn''.

Soft-Attention Unit

- A trainable unit which guides the "attention" of the network to the areas containing masks.
- Input subject-clothing pair masks are added together and then concatenated before being resized.
- The concatenated masks are then passed through a convolutional filter block to produce the soft-attention unit output.
- The soft-attention unit output is added to the output of the 3x3 convolutional layer of each bottleneck unit in ResNet [4].

Applications

As an early proof of concept, we test our best detector on unseen personal protective equipment samples from the Personal Protective Equipment dataset from Benedetto et al. [5].

1.000	0.003	0.527
0.100	1.000	0.449
0.069	0.000	1.000

Table 2: ResNet101V2 predictions on unseen personal protective equipment images.

Relatable Clothing Dataset

- There were no datasets containing detailed instance segmentations and visual relationship classes for ``worn'' and ``unworn'' detection of clothing before Relatable Clothing.
- Relatable Clothing is a modified version of DeepFashion2 [1].
 - Mask R-CNN trained with Open Images V6 [2,3] to provide person instance segmentations. • ``unworn'' samples added to images with ``worn'' samples.
- 29,852 person-clothing pairs for training
- 5705 person-clothing pairs partitioned into 10 folds for validation and testing.

Conclusions and Future Work

We proposed a novel soft attention unit for detecting worn and unworn clothing given person and clothing mask priors. In addition, we release a dataset for ``worn'' and ``unworn'' clothing detection titled Relatable Clothing. We achieve the best performance using a ResNet101V2 backbone with 33 of our proposed soft attention units. This model achieved 98.55% ± 0.35% accuracy, 98.58% \pm 0.65% specificity, and 98.84% \pm 0.29% F₁ score on the Relatable Clothing Dataset. We also present some promising use cases in workplace safety through qualitative results on a small high-visibility vest dataset. In our future works we plan on expanding the proposed network to do end-to-end object detection and visual relationship detection. This involves detecting all person-clothing pairs in a given image and classifying ``worn'' and ``unworn'' for each pair.

(d) (e) (C) Figure 1: Example samples from the Relatable Clothing Dataset. From left to right: a) the person mask, b) the image, c) the first ``unworn'' article of clothing, d) the first ``worn'' article of clothing, e) the second ``worn'' article of clothing

Results

Table 1: Summary of results using the proposed soft-attention unit on the Relatable Clothing dataset validation set.

Backbone	Soft Attention Units	Accuracy (%)	Precision (%)	Recall (%)	Specificity (%)	F ₁ (%)
ResNet50V2	1	96.00 ±	98.79 ±	94.83 ±	97.98 ±	96.76 ±
	L	1.03	0.56	1.41	0.96	0.85
ResNet50V2	16	97.74 ±	97.76 ±	98.66 ±	96.17 ±	98.21 ±
		0.40	0.61	0.46	0.87	0.36
ResNet101V2 1	1	97.97 ±	98.96 ±	97.79 ±	98.24 ±	98.37 ±
	T	0.63	0.33	0.98	0.49	0.54
ResNet101V2	22	98.55 ±	99.16 ±	98.52 ±	98.58 ±	98.84 ±
	33	0.35	0.40	0.50	0.65	0.29

References

[1] Ge, Yuying, et al. "Deepfashion2: A versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images." Proceedings of the IEEE conference on computer vision and pattern recognition. 2019. [2] Benenson, Rodrigo, Stefan Popov, and Vittorio Ferrari. "Large-scale interactive object segmentation with human annotators." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. [3] Kuznetsova, Alina, et al. "The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale." (2020). [4] He, Kaiming, et al. "Identity mappings in deep residual networks." European conference on computer vision. Springer, Cham, 2016. [5] Di Benedetto, Marco, et al. "Learning safety equipment detection using virtual worlds." 2019 International Conference on Content-Based Multimedia Indexing (CBMI). IEEE, 2019.

