

RSINet: Rotation-Scale Invariant Network for Online Visual Tracking

Yang Fang (fangyang968@gmail.com), Geun-Sik Jo* and Chang-Hee Lee

Inha University, KAIST

Introduction

Siamese network trackers

- No model update and cannot learn target-specific variation adaptively
- Axis-aligned model contains extra noise
- Weak at **rotation** and **scale** estimation

Proposed RSINet tracker

- **Model update** adaptively and dynamically
- Object-aligned model without extra noise
- Tailored for **rotation** and **scale** estimation

Algorithm 1: Proposed RSINet Tracker. **Input:** Pre-trained Network model M and Initial frame I_0 with annotation. **Output:** Estimated target state $\mathcal{O}_{\mathbf{t}}^* = (x_t, y_t, s_t, r_t)$; Updated model filters h_t . **while** frame $t \leq length(video\ sequence)\ do$ Feed new frame into Siamese network to predict new target state (x_t, y_t, s_t, r_t) . if $(t \mid 10)$ then Calculate spatio-temporal energy ε , in [9] if $\varepsilon > \kappa \varepsilon_0$ then Derive steepest descend update rate α_s , [10] $\alpha \leftarrow \min(\frac{1}{2}, \alpha_s), [11]$ Update tracking model filter $h^{t+1} = h^t + \alpha \nabla L(h^t)$. end t = t + 1end

Rotation-Scale Invariant Network

Target-Distractor Discrimination (TDD) module:

Score map:
$$s(x, w) = m \cdot (x * w) + (1 - m) \cdot \max(0, x * w)$$

TDD Loss:
$$L_{td}(\mathbf{w}) = \frac{1}{N} \sum_{(x,y) \in S} ||s(x,w) - y||^2 + ||\gamma * w||^2$$

• Rotation-Scale Invariance Module (RSI) module:

$$f(I^{lp}, \mathbf{h}) = \psi_3(h_3 * \psi_2(h_2 * \psi_1(h_1 * I^{lp})))$$

Rotation-Scale formulation in log-polar:

$$I_{t+1}^{lp}(\rho,\theta) = I_t^{lp}(\rho - \Delta\rho, \theta - \Delta\theta)$$

RSI Loss:
$$L_{rs}(\mathbf{h}) = \sum_{i=1}^{N} \|\mathcal{R}(f(I_i^{lp}, h), g_i)\|^2 + \sum_{i} \lambda_i \|h_i\|^2$$

Experimental evaluation

Conclusion

Proposed RSINet enables target-distractor model and rotation-scale model learning simultaneously. It keeps a good balance between tracking accuracy (0.604 on) vot18) and running efficiency (45 FPS)