Radical Counter Network for Robust Chinese Character Recognition

Yun-qing Li, Yi-xing Zhu, Jun Du, Chang-jie Wu, Jian-shu Zhang

Introduction

Background

Chinese character recognition remains a challenging work due to its large character categories, high similarity between characters and different application scenarios.

> Motivation

Mainly researches have the following shortcomings:

- The character-based methods can recognize common characters well but unable to handle unseen situation.
- Some radical-based methods can recognize unseen characters but need RNN-based decoder for sequence decoding.

Model

RCN

- Architecture
- CNN-based encoder
- RCM: judges whether the radicals exist.
- RRM : estimates the number of existing radicals

> Training

We use BCE loss for classification and MSE loss for regression.

$$L_{\rm RCN} = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=0}^{1} y_{ij}^{\rm cls} \log \left(o_{ij}^{\rm cls} \right) + \frac{\lambda}{n} \sum_{i=1}^{n} d(o_i^{\rm m}, y_i^{\rm reg})$$

> Inference

We choose the category with the closest distance in the candidate set as the prediction result.

$$o^{\text{mcls}} = \arg \max_{y^{\text{cls}} \in Y} d_1(o^{\text{cls}}, y^{\text{cls}})$$
$$o^{\text{mreg}} = o^{\text{mcls}} \cdot o^{\text{reg}}$$
$$c = \arg \min_{y^{\text{reg}} \in Y} d_2(o^{\text{mreg}}, y^{\text{reg}})$$

M-RCN

We combine these two decoders as a new multi-task network to get both global and local information from the shared encoder.

Training $L = L_{\text{RCN}} + \mu \sum_{i=1}^{K} y_i^{\text{WCN}} \log(o_i^{\text{WCN}})$

> Inference

We only utilize the output parts of RCN to produce the predicted character.

Experiment

Experiment on Printed Character Dataset

In order to show the great superiority of RCN in zero-shot or few-shot conditions, we first design a few experiments on printed characters.

> Experiment on Scene Character Dataset

Method	Accuracy	GFLOPs
AlexNet [2]	73.0	-
Overfeat [2]	76.0	-
ResNet50 [2]	78.2	-
ResNet152 [2]	79.0	-
Google Inception [2]	80.5	-
DenseNet	79.45	1.0751
RCN	84.12	1.0745
M-RCN	84.93	1.0779
RAN [6]	85.22	1.0926

> Ablation Studies

1. The effect of different modules

Model	Accuracy	Acc↓
w/o RRM	80.50%	3.62%
w/o RCM	78.61%	4.73%
RCN	84.12%	-

2. The effect of different distance metrics

d_1	Ed	Cd	Ed	Cd
d_2	Cd	Cd	Ed	Ed
accuracy	83.02%	83.27%	83.87%	84.12%

Future work

1. investigate the ability of RCN in other language recognition tasks. 2. expand the model to text line recognition.