Privacy Attributes-aware Message Passing Neural Network for Visual Privacy Attributes Classification

Hanbin Hong¹, Wentao Bao¹, Yuan Hong² and Yu Kong¹

¹Rochester Institute of Technology²

²Illinois Institute of Technology

Background

Task: Visual Privacy Attributes Classification (VPAC) is to classify an input image into multiple pre-defined visual privacy attributes, e.g., face, race, gender and address.

STITUTE OF

1829

R·I·

Challenge: Different from single-label classification, the label number for each input in VPAC is unknown. This causes the challenge that the output space is extremely large. **Solution**: We leverage the Message Passing Neural Network to model the dependencies between privacy attribute classes, in which each node represents a privacy attribute class.

Labels: Partial Face Race Skin Color Approximate Age Approximate Weight Occupation Gender Eye Color Social Circle Professional Circle Professional Circle Hair Color Complete Face

Framework Overview

Message Passing Neural Network

Experimental Results

Node

Feature

Average Precision scores on all visual privacy attributes. (C) represents 'complete'. (P) represents 'partial'.