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ABSTRACT ALGORITHM RESULTS

Instead of using all sentences present in the article, we have considered only
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problems of different real-life applications, its impact is studied in fusion with our optimization framework.
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Fig. 3. Pareto Fronts generated by our proposed MOOSciSumm approach at the end of Oth and 9th generations after optimizing two objective functions (i)
SentPos; (ii)) MazSimWithT'itle utilizing FastText vector. Here, sent_pos and sswt f refer to the mentioned objective function in (a) and (b), respectively.
Here, fr-0 in the legend indicates the solutions of rank-1 and so on.
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* F1: Sentence position in the article (F1) (T")

* F2: Maximum similarity with the Title (F2)

*  Representation of sentences using fast-text word2vec model followed by cosine FUTU RE WO RK

similarity (1)

*  Reciprocal of Word mover distance utilizing GoogleNews word2vec model : : : :
P 52008 (T) Our developed framework is generalized in nature and can be adopted for developing any other

Non-Dominated Sorting ’ FI3: “{L‘:\Xi”Z‘Eg)‘ E)/\]/\e)rlap with the top-scoring sentences provided by LexRank summarization systems, including single document summarization, multi-document
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Used to sort the solutions based on multiple objectives. It partition the population summarization, microblog summarization, among others. We will be working for developing these

into L different non-dominated fronts. Top best solutions are selected (Considering systems in future. We will also like to extend this work to write a related wok section on a given

rank-wise fronts) to proceed for the next generation. In case of a tie, the solutions Thus, objective is to maximize these objective functions represented as topic in an automatic manner.

within a front are further sorted based on crowding distance and the solutions having
higher crowding distance, are added as part of next generation. max{F1 F9 F3a00)
avg:s avg:s avg
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