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Introduction
❑ The Problem & Challenges
✓ The objective of egocentric activity recognition is to recognize the

human activities targeting the camera wearer (observer).
✓ The invisibility of the camera wearer and the presence of ego-motion

make the recognition task much more challenging.
✓ It is crucial to simultaneously identify hand motion patterns and the

manipulated objects.

❑ Related Work & Motivations
✓ One potential way is to locate the regions of relevant objects by

leveraging large-scale fine-grained annotations [1] [2]. This pipeline is
computationally intensive and unfeasible in practice.

✓ Ego-RNN [3] generates attention independently based on each
frame, without considering temporal consistency.

✓ It is not robust to track the spatial attention across the frames by
only maintaining the historical information of the RGB modality.

❑ Contributions
✓ We propose a flow-guided spatial attention tracking (F-SAT) module,

which accurately localizes discriminative features of regions of
interest across frames.

✓ We insert the proposed F-SAT module into a two-branch-based
architecture, which provides complementary information for
egocentric activity recognition.
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Fig. 1. The overall architecture of the proposed method.

Methodology

❑ Overall Architecture

❑ Flow-guided Spatial Attention Tracking Module
✓ First stage: we employ a top-down attention mechanism, i.e., class

activation map (CAM) [4], to generate a coarse attention map based
on the input:

𝐀𝑡
𝑐 𝑖 = 

𝑛=1

𝑁

𝑤𝑛
𝑐 𝐱𝑡

𝑛(𝑖)

✓ Second stage: a novel recurrent block, which aims to fine-tune the
coarse attention map, is proposed by exploiting contextual
information and guidance based on optical flow:

(𝐢𝑡 , 𝐨𝑡 , 𝐪𝑡 , 𝐬𝑡) = (𝜎, 𝜎, 𝜎, 𝜂)(𝐖 ∗ 𝐀𝑡 + 𝐔 ∗ 𝐅𝑡 + 𝐕 ∗ 𝐡𝑡−1 + 𝐛)

𝐜𝑡 = 𝐢𝑡⨀𝐬𝑡 + 𝐪𝑡⨀𝐜𝑡−1

𝐡𝑡 = 𝐨𝑡⨀𝜂(𝐜𝑡)

✓ Residual connection-based recalibration & feature filtering:

𝐠𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐀𝑡 + 𝐡𝑡)

𝐋𝑡 = 𝐠𝑡⨀𝐱𝑡

Experimental Results

❑ Datasets: GTEA 61, GTEA 71 and EGTEA Gaze+
❑ Ablation Study
✓ Effectiveness of the F-SAT module
✓ Effectiveness of multi-branch fusion

Table I. Ablation experiment results on the GTEA 61 data set.

❑ Comparison with State-of-the-Art Methods

Table II. Comparison results on three egocentric activity data sets.

✓ By exploring temporal context and integrating optical flow as a
guidance signal, the proposed F-SAT module is capable of highlighting
the discriminative features from relevant regions across the frames.

✓ We validate the practical effectiveness of the F-SAT module by
inserting it into a two-branch-based CNN-LSTM network.

✓ Evaluation results on three egocentric activity data sets demonstrate
that our method can achieve better performance, compared with
state-of-the-art algorithms.

Conclusion

❑ Flow-guided Spatial Attention Tracking Module

Fig. 2. Schematic diagram of the proposed flow-guided spatial attention tracking (F-SAT) module.

Fig. 3. Visualization of the attention maps generated by SAT and F-SAT on two video sequences.


