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Introduction

. The Problem & Challenges

v' The objective of egocentric activity recognition is to recognize the
human activities targeting the camera wearer (observer).

v The invisibility of the camera wearer and the presence of ego-motion
make the recognition task much more challenging.

v’ It is crucial to simultaneously identify hand motion patterns and the
manipulated objects.

] Related Work & Motivations

v’ One potential way is to locate the regions of relevant objects by
leveraging large-scale fine-grained annotations [1] [2]. This pipeline is
computationally intensive and unfeasible in practice.

v' Ego-RNN [3] generates attention independently based on each
frame, without considering temporal consistency.

v It is not robust to track the spatial attention across the frames by
only maintaining the historical information of the RGB modality.

. Contributions

v' We propose a flow-guided spatial attention tracking (F-SAT) module,
which accurately localizes discriminative features of regions of
interest across frames.

v We insert the proposed F-SAT module into a two-branch-based
architecture, which provides complementary information for
egocentric activity recognition.
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] Flow-guided Spatial Attention Tracking Module

v' First stage: we employ a top-down attention mechanism, i.e., class
activation map (CAM) [4], to generate a coarse attention map based
on the input:
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v' Second stage: a novel recurrent block, which aims to fine-tune the
coarse attention map, is proposed by exploiting contextual
information and guidance based on optical flow:
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v Residual connection-based recalibration & feature filtering:
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Experimental Results

_] Datasets: GTEA 61, GTEA 71 and EGTEA Gaze+

] Ablation Study
v' Effectiveness of the F-SAT module
v’ Effectiveness of multi-branch fusion

Table I. Ablation experiment results on the GTEA 61 data set.

Ablation Setting Accuracy (%)

Motion branch 46.72
Appearance branch 51.68
Appearance branch (SAT) 73.92
Appearance branch (F-SAT) 78.16
Two-branch (F-SAT) 81.29
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Fig. 1. The overall architecture of the proposed method.

] Flow-guided Spatial Attention Tracking Module
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Fig. 2. Schematic diagram of the proposed flow-guided spatial attention tracking (F-SAT) module.
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Fig. 3. Visualization of the attention maps generated by SAT and F-SAT on two video sequences.

1 Comparison with State-of-the-Art Methods

Table Il. Comparison results on three egocentric activity data sets.

Methods GTEA 61 GTEA 71 EGTEA Gaze+

DEA [5] 64.00 62.10 46.50
Action+object-Net [1] 73.02 73.24 -

Two-stream model [2] 51.58 49.65 41.84
TSN [6] 69.33 67.23 55.93
Ele AttG [7] 66.67 60.83 57.01
Ego-RNN [3] 79.00 77.00 60.76
LSTA-two stream [8] 80.01 78.14 61.86
SAP [9] - - 62.70
F-SAT-two stream 31.29 79.02 62.78

Conclusion

v’ By exploring temporal context and integrating optical flow as a
guidance signal, the proposed F-SAT module is capable of highlighting
the discriminative features from relevant regions across the frames.

v' We validate the practical effectiveness of the F-SAT module by
inserting it into a two-branch-based CNN-LSTM network.

v’ Evaluation results on three egocentric activity data sets demonstrate
that our method can achieve better performance, compared with

state-of-the-art algorithms.



