

Task Definition

- Key Information Extraction (KIE) from documents is the downstream task of OCR.
- The aim of KIE is to extract a number of key fields from the given documents, and save the texts to structured documents.
- KIE is essential for a wide range of technologies such as efficient archiving, fast indexing, document analysis and so on.

Motivation

- KIE is a challenge task because documents not only have textual features extracting from OCR systems, but also have semantic visual features that are not fully exploited, and it play a critical role in KIE.
- Too little work has been devoted to efficiently make full use of both textual and visual features of the documents.
- Existing methods for KIE only use text and box, and need task-specific knowledge and human-designed rules.

Figure 1: Typical architectures and our method for key information extraction. (a) hand-craft features based method. (b) automatic extraction features based method. (c) using more richer features based method. (d) our proposed models.

 (\mathbf{v}_{j}^{0})

The overall architecture is shown in Figure 2, which contains 3 modules:

where $\mathbf{w}_i \in \mathbb{R}^{d_{model}}$ is learnable weight vector.

PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Wenwen Yu^{*1}, Ning Lu^{*2}, Xianbiao Qi², Ping Gong¹, Rong Xiao²

¹Xuzhou Medical University, Xuzhou, China ²Ping An Property & Casualty Insurance Company, Shenzhen, China

Figure 2: Overview of PICK

Method

• *Encoder*: This module encodes textual and morphology information individually, which will be used as node input to the Graph Module.

• Graph Module: This module can catch the latent relation between nodes and get richer graph embeddings representation of nodes through improved graph learningconvolutional operation, which get non-local and nonsequential features.

• Decoder: This module performs sequence tagging on the union non-local sentence at character-level using BiL-STM and CRF, respectively.

Graph Learning

Given an input $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_N]^T \in \mathbb{R}^{N \times d_{model}}$ of graph nodes, where $\mathbf{v}_i \in \mathbb{R}^{d_{model}}$ is the *i*-th node of the graph, Graph Module generate a soft adjacent matrix A that represents the pairwise relationship weight between two nodes.

= softmax(
$$\mathbf{e}_i$$
), $i = 1, ..., N$, $j = 1, ..., N$,
= LeakRelu($\mathbf{w}_i^T | \boldsymbol{v}_i - \boldsymbol{v}_j |$)), (1)

$$\sum_{j=1}^{N} A_{ij} = 1, A_{ij} \ge 0.$$
 (2)

We use the modified loss function to optimize the learnable weight vector \mathbf{w}_i as follows

$$\mathcal{L}_{\text{GL}} = \frac{1}{N^2} \sum_{i,j=1}^{N} \exp(A_{ij} + \eta \| \boldsymbol{v}_i - \boldsymbol{v}_j \|_2^2) + \gamma \| \mathbf{A} \|_F^2, \quad (3)$$

where $\|\cdot\|_F$ represents Frobenius-Norm. γ is a tradeoff parameter and larger γ brings about more sparsity soft ad*jacent matrix* **A** of graph.

Graph Convolution

Firstly, given an input $\mathbf{V}^0 = \mathbf{X}_0 \in \mathbb{R}^{N \times d_{model}}$ as the initial layer input of the graph, initial *relation embedding* α_{ii}^0 between the node v_i and v_j is formulated as follows

$$\boldsymbol{\alpha}_{ij}^{0} = \mathbf{W}_{\alpha}^{0}[x_{ij}, y_{ij}, \frac{w_i}{h_i}, \frac{h_j}{h_i}, \frac{w_j}{h_i}, \frac{T_j}{T_i}]^T, \qquad (4)$$

where $\mathbf{W}_{\alpha}^{0} \in \mathbb{R}^{dmodel \times 6}$ is learnable weight matrix. Then we extract *hidden features* \mathbf{h}_{ij}^l between the node v_i and v_j from the graph using the *node-edge-node* triplets (v_i, α_{ij}, v_j) data in the *l*-th convolution layer, which is computed by

$$\mathbf{n}_{ij}^{l} = \sigma(\mathbf{W}_{v_ih}^{l}\mathbf{v}_{i}^{l} + \mathbf{W}_{v_jh}^{l}\mathbf{v}_{j}^{l} + \boldsymbol{\alpha}_{ij}^{l} + \mathbf{b}^{l}), \qquad (5)$$

Finally, *node embedding* \mathbf{v}_i^{l+1} aggregate information from

Contact information: Wenwen Yu, No. 209 Tongshan Road, School of Medical Imaging, Xuzhou Medical University, Xuzhou 221000, China – Phone: (+86)183–6127–7609 – Email: yuwenwen62@gmail.com; Web: www.yuwenwen.site

hidden features h_{ij}^l using graph convolution to update node representation. For node v_i , we have

$$\mathbf{v}_i^{(l+1)} = \sigma(\mathbf{A}_i \mathbf{h}_i^l \mathbf{W}^l) \,,$$

where $\mathbf{W}^{l} \in \mathbb{R}^{d_{model} \times d_{model}}$ is layer-specific learnable weight matrix in the *l*-th convolution layer.

The relation embedding α_{ij}^{l+1} in the l+1-th convolution layer for node v_i is formulated as

$$\boldsymbol{\alpha}_{ij}^{l+1} = \sigma(\mathbf{W}_{\alpha}^{l}\mathbf{h}_{ij}^{l}) \,,$$

where $\mathbf{W}_{\alpha}^{l} \in \mathbb{R}^{d_{model} \times d_{model}}$ is layer-specific trainable weight matrix in the *l*-th convolution layer.

Results

Table 1: Performance comparison between PICK (Ours) and baseline method on Medical invoice datasets.

Entitios	Baseline			PICK (Ou		
Linutes	mEP	mER	mEF	mEP	mER]
MIT	66.8	77.1	71.6	85.0	81.1	
CCTA	85.7	88.9	87.3	93.1	98.4	
IN	61.1	57.7	59.3	93.9	90.9	
SSN	53.4	64.6	58.5	71.3	64.6	
Name	73.1	73.1	73.1	74.7	85.6	
HN	69.3	74.4	71.8	78.1	89.9	1
Overall (micro)	71.1	73.4	72.3	85.0	89.2	

Table 2: Results on SROIE and train ticket datasets.

Method	Train Ticket (mEF)	SROIE (mEF)
Baseline	85.4	-
LayoutLM	_	95.2
PICK (Ours)	98.6	96.1

Table 3: Results of each component of our model.

Model	Medical Invoice (mEF)	Train Ticket
PICK (Full model)	87.0	98.6
w/o image segments	↓0.9	↓0.4
w/o graph learning	↓1.6	↓0.7

https://github.com/wenwenyu/PICK-pytorch