

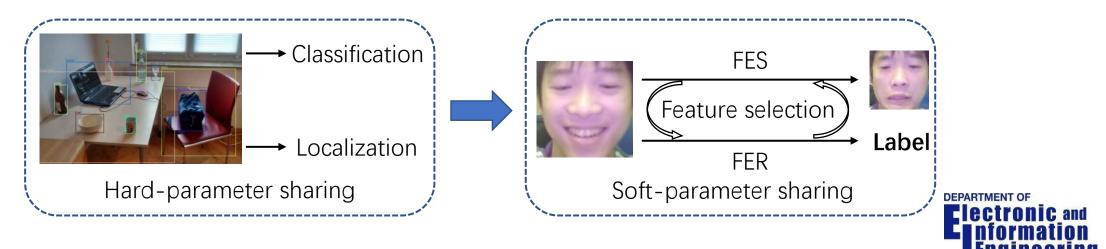


### Deep Multi-task Learning for Facial Expression Recognition and Synthesis Based on Selective Feature Sharing ICPR 2020

#### Rui Zhao, Tianshan Liu, Jun Xiao, Daniel P.K. Lun, and Kin-Man Lam

Department of Electronic and Information Engineering The Hong Kong Polytechnic University

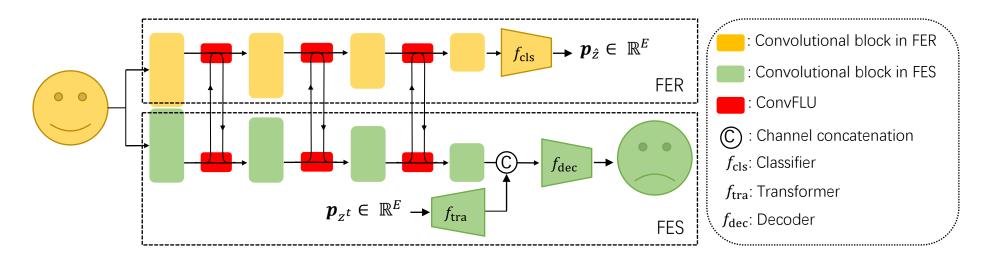



# Motivations

- Facial expression synthesis (FES)
  - $\Box$  GAN: facial observation  $\rightarrow$  latent code  $\rightarrow$  facial observation

The generator naturally captures strong semantics of facial expressions




Regularize the interaction between different tasks
Current multi-task networks adopt a simple hard-parameter sharing strategy:



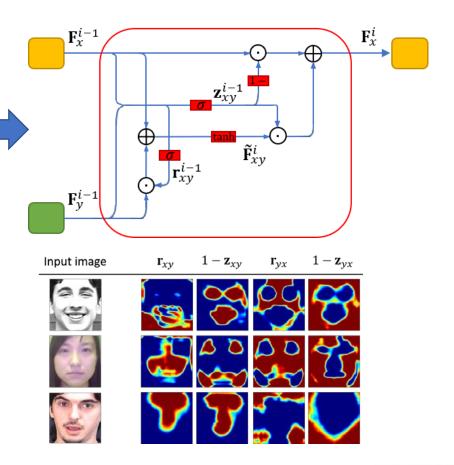


### Main Idea

- We propose a novel multi-task network, with convolutional feature leaky units, to selectively transfer the beneficial features between FER and FES.
- We employ the FES branch to enlarge and balance the training dataset for further improving the generalization ability.







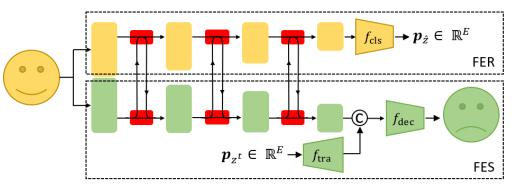

# Methodology

Convolutional Feature Leaky Unit

$$\begin{split} \mathbf{r}_{xy}^{i-1} &= \sigma(\mathbf{W}_{\mathbf{r}}^{i-1} * [\mathbf{F}_{x}^{i-1}, \mathbf{F}_{y}^{i-1}]), \\ \widetilde{\mathbf{F}}_{xy}^{i} &= \tanh(\mathbf{W}^{i-1} * (\mathbf{r}_{xy}^{i-1} \odot \mathbf{F}_{y}^{i-1}) + \mathbf{U}^{i-1} * \mathbf{F}_{x}^{i-1}), \\ \mathbf{z}_{xy}^{i-1} &= \sigma(\mathbf{W}_{\mathbf{z}}^{i-1} * [\mathbf{F}_{x}^{i-1}, \mathbf{F}_{y}^{i-1}]), \\ \mathbf{F}_{x}^{i} &= (1 - \mathbf{z}_{xy}^{i-1}) \odot \mathbf{F}_{x}^{i-1} + \mathbf{z}_{xy}^{i-1} \odot \widetilde{\mathbf{F}}_{xy}^{i}. \end{split}$$

- $\boldsymbol{x}$  : Task of facial expression recognition
- $\mathcal{Y}$ : Task of facial expression synthesis
- $\mathbf{r}_{xy}^{i-1}$  : Leaky gate determines the knowledge transfer.
- $\mathbf{z}_{xy}^{i-1}$  : Memory gate determines the knowledge preservation








# Methodology

• Learning Criteria

□ FER → Accurate classification:  $\mathcal{L}_{cls} = \frac{1}{n} \sum_{i=1}^{n} -\log\left(\frac{\exp(\boldsymbol{p}_i[z_i])}{\sum_j \exp(\boldsymbol{p}_i[j])}\right)$ 



□ FES → Photo-realistic facial images with the expected expressions  $\mathcal{L}_{GAN} = \mathbb{E}_{z^{t}, I^{t}}[\log D(z^{t}, I^{t})] + \mathbb{E}_{z^{t}, I}[\log(1 - D(z^{t}, G(z^{t}, I)))] \longrightarrow \text{Photo realistic}$   $\mathcal{L}_{rec} = \frac{1}{n} \sum_{i=1}^{n} ||G(z^{t}, I_{i}) - I_{i}^{t}||_{2}^{2} \longrightarrow \text{Image content}$   $\mathcal{L}_{cyc} = \frac{1}{n} \sum_{i=1}^{n} ||G(z_{i}, G(z^{t}, I_{i})) - I_{i}||_{2}^{2} \longrightarrow \text{Cycle consistency}$   $\mathcal{L}_{idt} = \frac{1}{n} \sum_{i=1}^{n} ||f_{\text{LiCNN}}(G(z^{t}, I_{i})) - f_{\text{LiCNN}}(I_{i}^{t})||_{2}^{2} \longrightarrow \text{Identity preservation}$ 





#### • Datasets

- □ Extended Cohn-Kanade (CK+)
- Oulu-CASIA (Oulu)

#### THE NUMBER OF VIDEO SEQUENCES IN CK+, OULU-CASIA, AND MMI, BASED ON DIFFERENT EMOTION LABELS.

| Database   | An | Со | Di | Fe | Ha | Sa | Su | Total |
|------------|----|----|----|----|----|----|----|-------|
| CK+        | 45 | 18 | 59 | 25 | 69 | 28 | 83 | 327   |
| Oulu-CASIA | 80 | -  | 80 | 80 | 80 | 80 | 80 | 480   |
| MMI        | 33 | -  | 32 | 28 | 42 | 32 | 41 | 208   |

- Settings:
  - □ The three peak-intensity facial images are selected
  - □ Ten-fold cross-validation strategy, based on the subject identity, is adopted.
- [CK+]: T. Kanade, et al., "Comprehensive database for facial expression analysis," in IEEE International Conference FG, 2000.
- [Oulu]: G. Zhao, et al., "Facial expression recognition from near-infrared videos," Image Vision Computation, 2011.
- [MMI]: M. Pantic , et al. , "Web-based database for facial expression analysis," in ICME, 2005





#### • Recognition Results for FER

| Methods           | Pre-train | Setting        | Accuracy (%) |
|-------------------|-----------|----------------|--------------|
| LBP-TOP [35]      | ×         | Image sequence | 88.99        |
| HOG 3D [36]       | ×         | Image sequence | 91.44        |
| 3DCNN [37]        | ×         | Image sequence | 85.9         |
| IACNN [25]        | 1         | Single image   | 95.37        |
| DTAGN [26]        | 1         | Image sequence | 97.25        |
| IPA2LT [38]       | ×         | Single image   | 91.67        |
| DeRL [27]         | 1         | Single image   | 97.30        |
| LBVCNN [28]       | 1         | Image sequence | 97.38        |
| DMT-CNN [10]      | 1         | Single image   | 97.55        |
| FERSNet           | ×         | Single image   | 97.35        |
| FERSNet (BU-4DFE) | 1         | Single image   | 97.85        |

| Methods           | Pre-train | Setting        | Accuracy (%) |
|-------------------|-----------|----------------|--------------|
| LBP-TOP [35]      | ×         | Image sequence | 68.13        |
| HOG 3D [36]       | ×         | Image sequence | 70.63        |
| STM-Explet [40]   | ×         | Image sequence | 74.59        |
| DTAGN [26]        | 1         | Image sequence | 81.46        |
| IPA2LT [38]       | ×         | Single image   | 61.02        |
| DeRL [27]         | 1         | Single image   | 88.0         |
| LBVCNN [28]       | 1         | Image sequence | 82.41        |
| DMT-CNN [10]      | 1         | Single image   | 87.5         |
| ExprGAN [13]      | 1         | Single image   | 84.72        |
| FERSNet           | ×         | Single image   | 83.47        |
| FERSNet (BU-4DFE) | 1         | Single image   | 89.23        |

| $\cap$ | V              | ┶  |
|--------|----------------|----|
| C      | $[\mathbf{N}]$ | I. |

Oulu

| Methods           | Pre-train | Setting        | Accuracy (%) |
|-------------------|-----------|----------------|--------------|
| LBP-TOP [35]      | ×         | Image sequence | 59.51        |
| HOG 3D [36]       | ×         | Image sequence | 60.89        |
| STM-Explet [40]   | ×         | Image sequence | 75.12        |
| DTAGN [26]        | 1         | Image sequence | 70.24        |
| IACNN [25]        | 1         | Single image   | 71.55        |
| DeRL [27]         | 1         | Single image   | 73.23        |
| LBVCNN [28]       | 1         | Image sequence | 76.28        |
| FERSNet           | ×         | Single image   | 71.31        |
| FERSNet (BU-4DFE) | ✓         | Single image   | 75.32        |

MMI





### • Results of FES

| -E3   |          | Synthetic Facial Images |       |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Synthetic Facial Images |          |           |         |        |      |         |       |
|-------|----------|-------------------------|-------|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|----------|-----------|---------|--------|------|---------|-------|
| Input |          | An                      | Di    | Fe    | Ha         | Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Su      | Input                   |          | An        | Di      | Fe     | Ha   | Sa      | Su    |
|       | CAAE     | the second              | 25    | de la | 36         | T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ٩ļe     | 2ª                      | CAAE     | 1.0       | 10.3    | AC D   | (a)  |         |       |
|       | CycleGAN | A.                      | NIC B | 200   | Se la      | 1 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.0     |                         | CycleGAN | A         | A       |        | E    | - A     |       |
|       | ExprGAN  |                         | 25    |       | T          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e le    |                         | ExprGAN  |           | T       | E      | al a | - EF    |       |
|       | StarGAN  | ile a                   | ) C B | 100 B | (\$)<br>() | 3 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000     |                         | StarGAN  |           | 1 and 1 |        | 3    |         | 000   |
|       | Ours     | 0 40<br>0 40<br>0       | 35    |       | 20         | e de la compañía de l | C LO    |                         | Ours     |           |         | S      |      |         | 01.0  |
| 6 = 6 | CAAE     | R-LE                    | 6 36  | 10-10 | 6 - A      | 16 say                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10-31   | 100                     | CAAE     | 30        | 10.31   | a.e.   | 20   | Part    | 30    |
|       | CycleGAN | 6.21                    | 150   | 0.31  | 25         | 6.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (B 1 1) |                         | CycleGAN | OF.       | P.S.    | (all   | 25   | H-SO    |       |
|       | ExprGAN  | 8-31                    | 20    | 6.10  | 1          | 10 × (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.30    |                         | ExprGAN  | 2º        | 20      | 00     | 200  | 20      | 0     |
|       | StarGAN  | 6 3 (1)                 | 830   | 6.30  | 10         | 63((                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                         | StarGAN  | TO        | 100     | (Fel)  | 3S   | 10      | 10.30 |
|       | Ours     | 11:0                    | 136   | 6.26  | 25         | 6 2 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (B 2 0) |                         | Ours     | the state | た       | of the | 25   | and the | 20    |

Electronic and Engineering



• Quantitative Results on FES

We employ a standard FER model to recognize the synthetic facial images from different generative models.

#### THE RECOGNITION ACCURACY (%) ON THE SYNTHETIC FACIAL IMAGES PRODUCED BY THE DIFFERENT METHODS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

| Method     | CAAE  | CycleGAN | ExprGAN | StarGAN | Ours  |
|------------|-------|----------|---------|---------|-------|
| CK+        | 79.41 | 88.89    | 95.41   | 96.43   | 97.04 |
| Oulu-CASIA | 46.18 | 74.44    | 80.07   | 79.51   | 81.52 |

- Ablation Study
  - FERSNet w/o MTL: single-task network
  - FERSNet w/o ConvFLU: hard-parameter sharing
  - ✤ FERSNet w. FES-DA: using FES for data augmentation

The recognition results (%) for ablation study. The best results are highlighted in **bold**.

| Method              | CK+   | Oulu-CASIA | MMI   |
|---------------------|-------|------------|-------|
| FERSNet w/o MTL     | 94.70 | 73.33      | 63.78 |
| FERSNet w/o ConvFLU | 95.21 | 77.92      | 69.07 |
| FERSNet (original)  | 97.35 | 83.47      | 71.31 |
| FERSNet w/ FES-DA   | 97.75 | 87.64      | 73.87 |





## Conclusions

- We proposed a novel multi-task learning strategy to tackle both FER and FES problems simultaneously in a network.
- We designed a convolutional feature leaky unit to transfer only the beneficial features between the FER and FES tasks, while filtering out the harmful or useless information.
- We conducted extensive experiments to evaluate the proposed framework on both the FER and FES tasks. The results demonstrated that our proposed method achieved state-of-the-art performance on those commonly used facial benchmarks.





# Thank you!

