Median-shape Representation Learning for Category-level Object Pose Estimation in Cluttered Environments O Hiroki Tatemichi^{*} Yasutomo Kawanishi^{*} Daisuke Deguchi^{*} Ichiro Ide^{*} Ayako Amma[†] Hiroshi Murase^{*} Nagoya University [†] Toyota Motor Corporation

Base pose (0°)

Pose: 30°

30°

Pose

30° estimation

40°

<u>_</u>

Goal: Occlusion-robust category-level pose estimation

- Input: Cropped depth image
 - Robust to variations in color and lighting conditions

Common approach for pose estimation

Difficulties & Approach

- 1. The occluded part of the object is unobservable
 - De-occlude depth values of the occluded part
- 2. The true object center is shifted from the image center
 Estimate the occluded part and the offset
- 3. Shape variation within a category
 - Recostruct the median-shaped object in the category

[1] M. Sundermeyer et al., "Implicit 3D orientation learning for 6D object detection from RGB images", ECCV, 2018.

Goal: Realize occlusion-robust pose estimation from a depth image in the category-level

Motivation

- Grasping of objects by a robot
 - Observe an object with a depth image sensor
 - Determine the grip location of the object by pose estimation
- Difficulties in an object pose estimation task
 >Objects are often occluded in cluttered environments

> Instance-level vs. category-level

> Category-level estimation is more difficult owing to shape variations within the category

Difficulties & Approach

- 1. Occluded part of the object is unobservable
 - De-occlude depth values of the occluded part^[1]
- 2. True object center is shifted from the detected image center

Estimate the occluded part and the offset

3. Shape variation within a category

Recostruct a median-shaped object in the category

We propose a two-stage Encoder-Decoder model based on the above approaches

[1] M. Sundermeyer et al., "Implicit 3D orientation learning for 6D object detection from RGB images", ECCV, 2018.

Proposed method (1/2)

Two-stage Encoder-Decoder model

Extract features of a de-occluded object whose center is aligned to the image center Stage 1 : De-occluding Autoencoder
Stage 2 : Median-shape Reconstructor

Proposed method (2/2)

Median-shape Reconstructor

Absorb shape variations in a category

Evaluation (1/2)

Estimated the pose around the vertical axis with an interval of 1°

Used the below datasets we prepared
 Training: Large-scale virtual dataset + Real dataset
 Evaluation: Real dataset

Large-scale virtual dataset

Variously-shaped objects for evaluation

Evaluation (2/2)

Pose estimation results

The proposed method achieves the best performance

	Mean absolute angular error↓		Ratio of absolute angle error within 5° ↑	
Elevation angle	30 °	50 °	30 °	50 °
AAE ^[1] (Auto Encoder which only de-occludes)	17.85°	14.18°	43.6%	61.3%
Proposed	5 .15°	4.27 °	61 . 7 %	74.2 %

Visualization results

[1] M. Sundermeyer et al., "Implicit 3D orientation learning for 6D object detection from RGB images", ECCV, 2018.

Conclusion

Proposed a category-level occlusion-robust pose estimation method
 Two-stage Encoder-Decoder model to extract features of a de-occluded object whose center is aligned to the image center

Median-shape Reconstructor to absorb shape variations in a category

 Demonstrated the performance of the proposed method by evaluating it using a large-scale virtual dataset and a real dataset

Future work

- Handle complex occlusions
- Extend the rotation to 3D axes

