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ArNet (Attentive Redistribution Network)

® We introduce a new deep architecture for closing the semantic gaps between the

multiscale feature maps. ® Objective . produce the high-level semantic feature map

@ The proposed ScarfNet generates new multiscale feature maps with deeply fused @® Attention Block : After channel-wise concatenation of the outputs of ScNet,

and redistributed semantics by using the combination of biLSTM and the apply the channel-wise attention to them.

channel-wise attention model. @® Matching Block : The matching block down-samples the attentive feature maps

® For the first time in the literature, the biLSTM is used to combine the multiscale to the original size of the pyramidal features

features to incorporate strong semantics for feature pyramids. ® High-Level Semantic features : Finally, the output of the matching block is

@ The biLSTM model can produce deeply fused semantic information using the concatenated with the original feature to produce the highly semantic feature.
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Proposed Network Experimental Results
ScarfNet: Semantic Combining and Attentive Redistribution Feature Network ReSUItS on MS COCO
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ScNet

Overall Architecture

® ScNet (Semantic Combining Network) : Combining the scattered semantic
information using biLSTM performance gain over the baselines.

® Table provides the detection accuracy of the algorithms tested on the MS COCO

® The experiment was conducted on various baseline detectors and feature

pyramid modules.

® The proposed Scarf SSD513 and Scarf RetinaNet achieve the significant

® ArNet (Attentive Redistribution Network) : Redistributing the fused semantics

back to each pyramid level using the channel-wise attention model. Ablation Studies

> Detailed procedures:

Method mAP
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3. Concatenate the output features of ScNet X, , . . Top-down structure e
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4. ArNet produce the high-level semantic feature map and concatenated with the e

original feature to produce the final output feature X;. ® Table shows how the performance of our method improves as we add bi-LSTM

X; = X;®ArN et(X«,{—kﬂ:n) and channel-wise attention to the baseline one by one.

® The overall procedures can be expressed as ® The biLSTM offers the 1.6% AP gain over the baseline and combination of

X[ = ScarfNet(Xn_i+1:n) = Xi@®ArNet,(ScNet (Xn_k+1:n)), biLSTM and channel-wise attention adds 1.9% AP gain.

ScNet (Semantic Combining Network)

Conclusions

® Objective : combine the scattered semantic information @ In this study, we developed a deep architecture that generates multiscale
® Matching block : Resizes the pyramidal features such that they have the same features with strong semantics to reliably detect the objects in various sizes.
size. Then, it adjusts the channel dimension of the input using the 1x1 ® Our ScarfNet method transforms the pyramidal features produced by the
convolutional layer. baseline detector into evenly abstract features. ScarfNet fuses the pyramidal
® biLSTM : The biLSTM model can selectively fuse the contextual information in features using biLSTM and distributes the semantics back to each multiscale
multiscale features through the gating function. feature.
*" Matching Block e MO e ® We verified through experiments conducted with PASCAL VOC and MS COCO
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performance over the baseline detectors.

® Our object detector achieves the state-of-the-art performance on the PASCAL
VOC and COCO benchmarks.



