

Siamese-structure DNN Recognizing Changes in Facial Expression According to the Degree of Smiling

K. Kondo, T. Nakamura, Y. Nakamura (Kyoto Univ.), S. Satoh (NII)

Introduction

- Automatic QOL evaluation
- Evidence-based lifestyle support in aging or stressridden society
- Recognizing 'Smile' for estimating 'Happiness'

CAT]

Problem

- Ambiguous facial expressions frequently occur
- Conventional classifiers will not work well

Research question

Difference or change is obvious

and certainly recognized!

- > How well a computer recognizes such changes?
- Recognizing smiling intensity 'ascent' or 'descent' by a Siamese-structured network

Face image capture

- > Smiling face in daily situations
- When listening a radio program or enjoying a talk
- > Captured from 7 different directions

Dataset building

> Dataset A : sequential comparison of two images

Dataset B : automatic labeling of intermediate image pairs under a linear assumption

Results: frontal face in dataset A

Results: frontal face in dataset B

- > Training with frontal face images in dataset A
- > Test with frontal face images in dataset B

Results: multiple directions in dataset A

Data augmentation using horizontal flip

➤ Leave-one-out cross validation ➤ Direction-fold cross validation

1.000

D 1	0.918		0.886		0.857
Person 1 talk	0.922	0.951	0.961	0.956	0.900
laik	0.933		0.972		0.950
Dorson 2	0.902		0.963		0.927
Person 2	0.963	0.951	1.000	0.951	0.963

0.963

0.837		0.929		0.902
0.878	0.946	0.951	0.989	0.878
0.889		0.956		0.939
0.902		0.927		-
-	-	0.943	0.890	0.927
_		0.932		0.932

1.000

