

Robust Localization of Retinal Lesions via Weakly-supervised Learning

Ruohan Zhao, Qin Li, Jane You

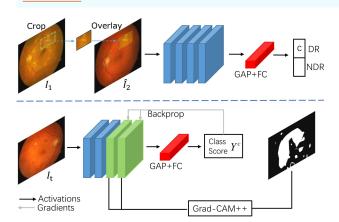
Background

Diabetic retinopathy (DR) is a common microvascular complication and one of the most common cause of vision loss and blindness among diabetics.

Motivation

Propose a localization framework that leverages solely image-level labels, achieving the localization of various lesions in a weakly-supervised manner.

Method



Algorithm 1: Training and localizing procedure

Training procedure:

Input: Training Data $I = \{(I_i, c_i)\}_{i=1}^N$ Output: Network parameters θ

While training is not convergent:

Use mix-training $\hat{I}_2, \hat{c} \leftarrow \text{Mix-Training}(\hat{I}_1, I_2, c_1, c_2);$

Get classification score $Y \leftarrow \text{Classifier}(\hat{I}_2)$; Update $\theta \leftarrow \text{BinaryCrossEntropy}(Y, \hat{c})$;

Localization procedure:

Input: The inference image I_t Output: localization map L

 $A_n^k, Y \leftarrow \text{Feed-forward}(I_t);$

For different layers n: $L_n \leftarrow \text{Grad-CAM}^{++}(A_n^k, Y);$

 $L \leftarrow \operatorname{Aggregation}(L_n)$

Mix-training

The classifier would attend to less distinct lesions e.g. tiny circular and deep-red dots.

Crop a random patch from image I_1 and overlaid the cropped patch to the corresponding region of I_2 to synthesize a new training sample \hat{I}_2 .

$$\hat{I}_2 = \mathbf{M} \odot I_1 + (\mathbf{1} - \mathbf{M}) \odot I_2$$

where \odot represents the element-wise multiplication and $\mathbf{M} \in \{0,1\}^{W \times H}$ is the binary mask that determines the regions to bind two samples. The label \hat{c} of the synthetic sample \hat{I}_2 is defined as:

$$\hat{c} = \begin{cases} \lambda c_1 + (1 - \lambda)c_2 & c_1 \in DR, c_2 \in NDR \\ c_2 & others \end{cases}$$

Inference

Gradients of multiple layers are calculated to derive several localization maps, denoted as L_n :

$$L_n = \text{ReLU}\left(\sum_k w_k \cdot A_n^k\right)$$

Denote the feature map at the n^{th} convolution layer of unit k as A_n^k . w_k is the weight to reflect the significance of feature map.

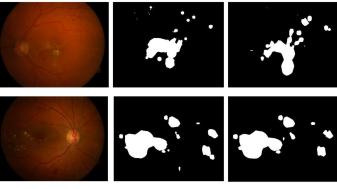
Result

TABLE I: Performance evaluation at lesion-level with other methods on DIARETDB1.

	Red lesion				Bright lesion			
Method	Microaneurysm		Hemorrhages		Hard Exudates		Soft Exudates	
	Sen%	FPI	Sen%	FPI	Sen%	FPI	Sen%	FPI
Chudzik et al.	64.1	8	-	-	-	-	-	-
Seoud et al.	63.9	8	-	-	-	-	-	-
Quellec et al.	61	10	71	10	80	10	90	10
Gondal et al.	52	1.5	91	1.5	87	1.5	89	1.5
Ours	63.4	4.2	95.9	2.6	94.2	3.0	93.1	2.3

TABLE II: Sensitivity% at image-level on the DIARETDB1 dataset. The best is shown in bold.

Method	MAs	HEs	Soft Exudates	Hard Exudates
Liu et al.	-	-	83.0	83.0
Zhou et al.	-	94.4	-	
Zhao et al.	-	98.1	-	-
Quellec et al.	-	94.7	-	-
Gondal et al.	50	97.2	90.9	100
Ours	68.9	97.5	92.2	98.5



Fundus image

Ground-truth

Localization result