Feature Fusion for Online Mutual Knowledge Distillation

Introduction

- Many researches on network architecture that extracts discriminative features.
- New approach : the feature fusion method that can combine different feature maps gained from multiple sub-networks.
- Feature fusion methods have been used in many previous deep learning studies.

DualNet – Example of feature fusion method

- DualNet which is feature fusion method trains independent two sub-networks with iterative training.
- This framework combine complementary two feature maps with fused classifier.

Motivation & Contribution

- Motivation
- Sub-networks can not help fused classifier with positive synergy.
- Only same architecture type can be used.
- Contribution
- Our method, Feature fusion learning (FFL) can improve the accuracy of sub-networks where gives positive synergy to a fused classifier.
- FFL can handle various architecture type.
- FFL can create meaningful feature maps used at computer vision tasks.

Method

Fusion Module

- Combining feature maps from the last layer of each subnetwork with convolution operation.
- To reduce computational cost, FFL use Depth-wise and Pointwise convolution.
- Combined feature maps is named as fused feature.

Online Mutual Knowledge Distillation

Ensemble knowledge distillation (EKD)

- Using ensemble logits of sub-networks and knowledge distillation, fusion module can generate meaning feature map with this loss $\mathcal{L}_{kl}^{f} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{i}(\mathbf{z}_{f}; T) \log(\frac{\sigma_{i}(\mathbf{z}_{f}; T)}{\sigma_{i}(\mathbf{z}_{k}; T)})$

- Fusion knowledge distillation (FKD)
- Using fused logits and knowledge distillation, sub-networks can be learned with this loss
- Feature fusion learning (FFL)
- With Cross entropy loss, EKD and FKD (Total loss), FFL framework trains sub-networks and fusion module

$$\mathcal{L}_{total} = \sum_{k=1}^{n} \mathcal{L}_{ce}^{k} + \mathcal{L}_{ce}^{f} + T^{2} \times (\mathcal{L}_{kl}^{e} + \mathcal{L}_{kl}^{f})$$

Experiments

Comparison with Feature Fusion Method

	CIFAR-10		CIFAR-100	
(%)	DualNet	FFL	DualNet	FFL
ResNet-32	6.21±0.20	$5.78 {\pm} 0.13$	27.49±0.31	25.56±0.32
ResNet-56	5.67 ± 0.12	5.26 ± 0.17	25.87 ± 0.29	23.53 ± 0.25
WRN-16-2	5.92 ± 0.16	5.97 ± 0.13	25.71 ± 0.20	24.74 ± 0.31
WRN-40-2	$4.94{\pm}0.10$	4.6 ± 0.13	23.22 ± 0.25	21.05 ± 0.25

(a) Top-1 classification error rate of fused classifiers. DualNet outputs results from the average of classifiers and FFL uses fusion module for classification.

	CIFAR-10		CIFAR-100	
(%)	DualNet	FFL	DualNet	FFL
ResNet-32	8.23±0.31	$6.06 {\pm} 0.15$	34.91±1.23	27.06±0.34
ResNet-56	7.34 ± 0.25	5.58 ± 0.13	32.67 ± 1.14	24.85 ± 0.30
WRN-16-2	7.53 ± 0.20	6.09 ± 0.09	31.7 ± 1.00	25.72 ± 0.28
WRN-40-2	6.25 ± 0.14	4.75 ± 0.16	28.4 ± 0.61	22.06 ± 0.20

(b) Top-1 classification error rate of sub-network classifiers.

Comparison with Knowledge Distillation Methods

	ResNet-32	ResNet-56
ONE	26.64 (26.94±0.21) {26.61*}	24.63 (25.10±0.29)
FFL-S	26.3 (26.66±0.21)	24.51 (24.85±0.31)
ONE-E	24.75 (25.19±0.20) {24.63*}	23.27 (23.59±0.24)
FFL	$24.31 (24.82 \pm 0.33)$	23.20 (23.43±0.19)

<Same architecture>

Net Types		DML		FFL	
Net 1	Net 2	Net 1	Net 2	Net 1	Net 2
ResNet-32 ResNet-56	WRN-16-2 WRN-40-2	28.31 ± 0.28 26.75 ± 0.21	26.45 ± 0.30 23.33 ± 0.27	27.06 ± 0.26 26.23 ± 0.30	25.93 ± 0.30 23.06 ± 0.43

<Different architecture>

References

- [1] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- [2] Zagoruyko, Sergey, and Nikos Komodakis. "Wide residual networks." arXiv preprint arXiv:1605.07146 (2016).
- [3] Zhang, Ying, et al. "Deep mutual learning." Proceedings of the IEEE Conference on Computer Vision and Pattern
- Recognition. 2018.
- [4] Hou, Saihui, Xu Liu, and Zilei Wang. "Dualnet: Learn complementary features for image recognition." Proceedings of the IEEE International Conference on Computer Vision. 2017.
- [5] Zhu, Xiatian, and Shaogang Gong. "Knowledge distillation by on-the-fly native ensemble." Advances in neural information processing systems 31 (2018): 7517-7527.