
Signature features with the visibility transformation (ICPR2020)

Definition: signature [7]
Given X : [a, b]→ Rd , an Rd-valued path mapping from [a, b]. The signature of a path
X is the infinite collection of all iterated integrals of X . That is,

S(X)a,b := (1, S(X)1
a,b, . . . , S(X)d

a,b, S(X)1,1
a,b
, S(X)1,2

a,b
, . . .), (1)

where the superscripts of the terms a�er the 0th term run along the set of all multi-index
{(i1, . . . , ik)|k ≥ 1, i1, . . . , ik ∈ [d]}. The finite collection of all terms
S(X)i1,...,ik

a,b
with the multi-index of fixed length k is termed as the kth level of the

signature. The truncated signature up to the pth level is denoted by bS(X)a,bcp .

Signatures as features

I Determining solutions for controlled di�erential equations.

I Invariance under time-reparameterisations.

I Unwrapping nonliearity.

I Fixed dimension under length variations, vectorisation.

I Faithful representation: tree-like equivalence.

I Only capturing the e�ect of pa�ern change and not ones depending on
the absolute position.

Path X
Signature

=⇒ Incremental e�ects of path X.

The goals of our study

I To introduce some transform that can preserve e�ects of both increments and
positions of the original streamed data within signature features.

I To o�ers a new way of preparing datasets and does not need to change the
pipeline.

Definition and property: visibility transformation (VT)
	

	

(a) Original 2-dimensional path X.

	

(b) I-visibility transformation (γI ).

	

(c) T-visibility transformation (γT ).

Figure: The paths (in subfigure (b) and (c)) generated from original pathX (subfigure (a)) via I-visibility
transformation and T-visibility transformation.

Path X
VT=⇒ Path X̄

Signature
=⇒ Positional and incremental e�ects of path X

Discrete VT

Given streamed data X =
(

x1, . . . , xn

)
, xi ∈ Rd . Because of the availability of Python

packages to calculate signature such as iisignature [9] from data points, one only need to
input data without having to transfer it to a path by

data X
Python packages

=⇒ signatures.

To apply VT in practice, one needs a discrete transform such that

data X
discrete VT=⇒ data X̄

Python packages
=⇒ signatures & data X̄

turned=⇒
into a path

path X̄.

Take a discrete data with two 2-dimensional observations [1, 2]T , [3, 4]T for example, the
discrete I-visibility transformation (IVT) would give[
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Figure: The workflow of the pipeline for feature extraction using visibility transformation: the input is the original data stream on
the le� end, and one may utilise di�erent transforms on the data stream for data cleaning and scaling; this is followed by applying
the visibility transformation on the cleaned data; finally one will use package to translate the transformed data to signature.

Applications: character trajectories dataset

I The data [12] consists of 2858 instances for 20 di�erent characters, and was captured using a
WACOM tablet at 200Hz. Each character sample is a 3-dimensional pen tip velocity trajectory,
namely (x, y, p). The original handwriting data contains training set (50%) and testing set
(50%).

I 4 Di�erent features: truncated signatures with the lead lag transform (LLT), truncated
signatures with LLT and being prefixed by the explicit initial position (LLT+IP), and truncated
signatures with LLT and the discrete I-visibility transformation (LLT+IVT). We also extracted
truncated signature features with LLT and IVT on the trajectory, namely the (x, y) path
(LLT+IVT on (x, y)). In the experiment, the signature features were truncated to levels
{2, 3, 4, 5, 6}.

I lightGBM Classifer: hyperparameter tuning implemented via grid search with cross validation.

(a) Signature level VS average accuracy with
standard deviation.

(b) CPU time VS average accuracy (log-log
scale).

Table: Comparison of di�erent methods on character trajectories dataset.

Method Accuracy Method Accuracy
φ(O,HMM)+SVM [8] 92.91% TK [11] 93.67%

LLT+IVT+SF on (x, y) 97.27% SDD [2] 98.00%
MCDS [3] 98.25% LLT+IVT+SF 98.54%

An application: Chalearn 2013 data

I The ChaLearn 2013 multi-modal gesture dataset [1] contains 23 hours of Kinect data of 27
subjects performing 20 Italian gestures.

I Liao et al [5] proposed a log-signature-based recurrent neural network model.

Table: Comparison of di�erent methods on the Chalearn 2013 data.

Method Accuracy Method Accuracy
Deep LSTM [10] 87.10% Two-stream LSTM [13] 91.70%

ST-LSTM + Trust Gate [6] 92.00% Three-stream net TTM [4] 92.08%
PT-Logsig-RNN 92.21% Modified PT-Logsig-RNN 92.89%
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