Signature features with the visibility transformation (ICPR2020)

Definition: signature [7] Pipeline

Given X : [a, b] — R, an R%valued path mapping from [a, b]. The signature of a path
X is the infinite collection of all iterated integrals of X. That is,
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where the superscripts of the terms after the Oth term run along the set of all multi-index
{(é1,...,ig)|k > 1,i1,. ..,k € [d]}. The finite collection of all terms

S(X):1 " with the multi-index of fixed length k is termed as the kth level of the
signature. The truncated signature up to the pth level is denoted by l-S(X)’lvbJ P Figure: The workflow of the pipeline for feature extraction using visibility transformation: the input is the original data stream on

the left end, and one may utilise different transforms on the data stream for data cleaning and scaling; this is followed by applying
the visibility transformation on the cleaned data; finally one will use package to translate the transformed data to signature.

Signatures as features

» Determining solutions for controlled differential equations.

» Invariance under time-reparameterisations.
. L Applications: character trajectories dataset
» Unwrapping nonliearity.
» Fixed dimension under length variations, vectorisation. »> The data [12] consists of 2858 instances for 20 different characters, and was captured using a
ithful . lik - WACOM tablet at 200Hz. Each character sample is a 3-dimensional pen tip velocity trajectory,
gl hiullepesentationucelielequivalence; namely (z, y, p). The original handwriting data contains training set (50%) and testing set
» Only capturing the effect of pattern change and not ones depending on (50%).
thelabsclutelposition: » 4 Different features: truncated signatures with the lead lag transform (LLT), truncated

signatures with LLT and being prefixed by the explicit initial position (LLT+IP), and truncated
signatures with LLT and the discrete I-visibility transformation (LLT+IVT). We also extracted
truncated signature features with LLT and IVT on the trajectory, namely the (x, y) path
(LLT+IVT on (2, )). In the experiment, the signature features were truncated to levels
{2,3,4,5,6}.

» lightGBM Classifer: hyperparameter tuning implemented via grid search with cross validation.

Signature
PathX == Incremental effects of path X.

The goals of our study

» To introduce some transform that can preserve effects of both increments and

positions of the original streamed data within signature features. 100
» To offers a new way of preparing datasets and does not need to change the 095
pipeline. © 090 S ox101
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Table: Comparison of different methods on character trajectories dataset.
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Method Accuracy Method Accuracy
(a) Original 2-dimensional path X. $(O,HMM)+SVM [8] 9291% TK [11] 93.67%
Lifted curve Lifted curve LLT+IVT+SF on (z, y) 97.27% SDD [2] 98.00%
+ Theorigin + Theorigin MCDS [3] 98.25% LLT+IVT+SF 98.54%
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N h » The ChaLearn 2013 multi-modal gesture dataset [1] contains 23 hours of Kinect data of 27
o2 ? o2 subjects performing 20 Italian gestures.
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» > Liao et al [5] proposed a log-signature-based recurrent neural network model.
00 oo Table: Comparison of different methods on the Chalearn 2013 data.
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(b) I-visibility transformation (~y1). () T-visibility transformation (y). Deep LSTM [10] $7.10% Two-stream LSTM [13] 91.70%
Figure: The paths (in subfigure (b) and (c)) generated from original path X (subfigure (a)) via I-visibility ST-LSTM + Trust Gate [6] 92.00% Three-stream net TTM [4] 92.08%
transformation and T-visibility transformation. PT-Logsig-RNN 92.21% Modified PT-Logsig-RNN 92.89%
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