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Abstract Method

In this work we introduce E-DNAS, a differentiable In this work we propose a methodology for automatic
architecture search method, which improves the efficiency neural architecture design to be executed on

of NAS methods in designing light-weight networks for the I embedded platforms. We present a dual step pipeline
task of image classification. for the automatic finding of the proper NN to run on a
E-DNAS computes, in a differentiable manner, the optimal particular platform attending to direct metrics like
size of a number of meta-kernels that capture patterns of the latency:

Input data at different resolutions. \We also leverage on the
additive property of convolutions operations to merge utm F._._
several kernels with different sizes into a single one, Lia123 ier
reducing thus the number of operations. \We report results in

terms of the SoC (System on Chips) metric, typically used in !
the Texas Instruments TDA2x families for autonomous

driving applications proving good results in terms of

accuracy and search time
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- High resolution feature extraction through depthwise
convolution using big dimension convolutional
kernels.

Feature map M

- Pairwise neural architecture cross-search for the
calculated feature maps on previous step.

Experiments and results

Model Search Method Search Space Search Dataset # Params(M) FLOPs(M)|acc(%) Model # Params (M) MACs (M) Time (ms)
MNeiV2 [28] manual : : 34 300 (720 fth - tributi : MNet [2] 4.2 569 75
CondenseNet(G=C=8) [20]  manual : : 4.8 529 | 73.8 ne or the main contributions 1 NasNet-A 5.3 564 183
EfficientNet-BO [30] manual - 5.3 390 763  the proposed circular feedback Ours 59 535 38
NASNet-A [5] RL cell CIFAR-10 5.3 564 74.0 i i
PNASNet [31 SMBO cell CIFAR-10 5.1 s88 | 742 0N each Iteration to speed up the W ol that |
DARTS [9] gradient cell CIFAR-10 4.7 574 73.3 : e propose a two-ste Ibeline that learns
PDARTS [32] aradient cell CIFAR-10 4.9 557 | 7156 Process by updating the target e PIop P PIP
GDAS [21] aradient cell CIFAR-10 4.4 97 | 125 \weights and network parameters different meta-kernel sizes, able to treat
MnasNet [17 RL stage-wise ImageNet 3.9 312 715.2 ) ] : :
Single-Path NAS [33] oradient layer-wise ImageNet 43 365 | 750  iteratively different resolution patterns to create
ProxylessNAS-R [24 RL layer-wise ImageNet 4.1 320 74.6 i ' i
ProxylessNAS-G [24 gradient layer-wise ImageNet - - 74.2 \We test out methOd Wlth _aUtomatICC) neura:hneJWOrkS ihat Cta_'n CI::aSS”:y
FBNet [20 gradient layer-wise ImageNet 3.5 375 74.9 " " IMages. VUr metnoad Can automatiCa
MNetV3 Large [34] RL layer-wise ImageNet 5.4 219 75.2 COmmerC|a| hardware Used In the g - y
MNetV3 Small [34] RL layer-wise ImageNet 2.9 66 | 674  gutonomous driving industry design light and fast neural networks that
MixNet [ 14 RL kernel-wise ImageNet 5.0 360 77.0 oL ] "
MetaKernels [10] gradient kernel-wise ImageNet 7.2 357 77.0 Obtalnlng gOOd results I1n terms of can fiton a target em_bedd_ed platform’ such
Ours osradient  parallel kernel-wise ImageNet 5.9 365 76.9 as, the one proposed IN th| S Work: Texas

Accuracy and search time

Results on ImageNet classification Benchmark Instruments TDA2x tamily.




