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Overview

I Existing Multi-task Multi-view studies are based on a single-objective function to solve
the Multi-task Multi-view learning problems.

I The optimums attained by these methods are often inconsistent.
I Multi-task Multi-view problems are inherently some multi-objective optimization prob-

lems because conflict may be between different views within a given task and also
between different tasks, necessitating a trade-off.

I In this work, we formulated the multi-task multi-view problem as a multi-objective op-
timization problem.

I Three objective functions are optimized simultaneously, viz., within-view task relation,
within-task view relation and the quality of the clusters obtained.
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Architecture

Figure 1: Schematic of the proposed methodology
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Flowchart

Figure 2: Flowchart of the Algorithm (MTMV-MO)
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Within-task View Relation I

I The idea is to maximize the similarity between the clusters among different views for
each task.

I For each given task (say t), the Agreement Index (AIt ) between a pair of views (say
v1 and v2) is calculated as follows:

AIt ,v1,v2 =
Na + 1
Nd + 1

, (1)

Na =
N∑

l=1

N∑
m=1

IAv1
lm ,Av2

lm
(2)

Nd = N2 − Na (3)

IAv1
lm ,Av2

lm
=

{
1 if Av1

lm = Av2
lm

0 otherwise
(4)

Here Av1 is the adjoint matrix of view v1 for the task t ; similar for Av2.
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Within-task View Relation II

The final Agreement index for all the views (Vt ) within the task t is given by :

AIt =

Vt∑
l=1

Vt∑
m=1,l 6=m

2× AIvl l,vm

Vt × (Vt − 1)
(5)

The total Agreement index for all the tasks, T , is calculated as:

AI =
∑T

t=1 AIt
T

(6)
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Cluster Quality Measure I

I To measure the quality of the clusters, we have calculated PBM index [4] for each view
within a task; given by PBMv

t .

PBMv
t = (

E1 × Dv
t

Z × Ev
t
)

Ev
t =

Z v
t∑

k=1

Nv
k∑

j=1

dist((Ct)
v
k ,n

k
j )

Dv
t =

Z v
t

max
i,j=1

dist((Ct)
v
i , (Ct)

v
j )

For a given view v within task t , Z = number of clusters, (Ct)
v
i = center of the i th

cluster, nk
j = j th data point of the k th cluster, Nv

k = total number of data points of the
k th cluster, Dv

t = maximum distance between a pair of cluster centers and Ev
t = total

distance between all the data points within a cluster and their corresponding cluster
centers
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Cluster Quality Measure II

I The total PBM index is calculated as the average of all the PBM indices (PBMv
t ).

PBM =

∑T
t=1

∑Vt
v=1 PBMv

t∑T
t=1 Vt

(7)

Here Vt is the total number of views in the task t .
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Within-view Task Relation
I The assumption is that, the clusters formed by the different related tasks for a partic-

ular view, should have high similarity.
I If i-th task and j-th tasks are related, then their related cluster centers should have

high similarity. This is formulated as follows:

disij =
Z∑

k=1

Z∑
l=1

min ||(Ci)
v
k − (Cj)

v
l ||22 (8)

DisSimv =
T∑

i,j=1,i 6=j

disij (9)

The final dissimilarity is calculated by averaging over all the views:

DisSim =

∑Vmax
v=1 DisSimv

Vmax
(10)

Here Vmax represents the maximum number of views present. For example, if Task1,
Task2 and Task3 have 2,3 and 2 views respectively. Then Vmax = 3.
The objective here is to minimize the Eqn. 10.
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Dataset Description

Table 1: Description of the datasets.

Leaves Mfeat WebKB NUS-WiDE

Task 1
Views 3 5 3 7

Samples 96 1000 226 3615
Classes 6 5 4 5

Task 2
Views 3 5 3 7

Samples 96 1000 226 3615
Classes 6 5 4 5

Task 3
Views 3 - 3 7

Samples 96 - 226 3615
Classes 6 - 4 5

Task 4
Views - - 3 7

Samples - - 226 3615
Classes - - 4 5
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Results

We have compared our proposed methodology with following algorithms:
I K-Means [2]: This is a new k-means type algorithm for clustering high-dimensional

objects in sub-spaces. It’s a simple single-view single-task algorithm.
I CoRe [3]: Co-Regularized multi-view spectral clustering algorithm (CoRe) is a

spectral based multi-view algorithm.
I LSSMTC [1]: This is the shared subspace learning multi-task clustering algorithm

(LSSMTC).
I BMTMVC [5]: This is the Bipartite graph based multi-task multi-view clustering

algorithm (BMTMVC).
I SMTMVC [5]: This is the semi-nonnegative matrix tri-factorization based multi-task

multi-view clustering algorithm (SMTMVC).
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Results

Table 2: Comparison of results in terms of ARI

Methods Tasks Leaves Mfeat WebKB NUS-WiDE

K-Means

T 1 61.39 57.16 52.14 46.37
T 2 58.47 48.61 44.14 40.22
T 3 59.35 - 41.08 42.52
T 4 - - 50.02 43.52
Avg 90.74 53.14 46.24 43.11

CoRe

T 1 69.11 86.47 60.12 58.34
T 2 70.13 79.38 59.41 58.12
T 3 69.92 - 57.44 59.02
T 4 - - 60.74 58.41
Avg 90.72 82.14 60.14 58.42

LSSMTC

T 1 65.98 88.21 83.45 60.25
T 2 60.56 85.10 81.32 62.53
T 3 68.12 - 7.14 63.54
T 4 - - 82.03 60.02
Avg 64.24 86.14 81.04 61.51

BMTMVC

T 1 92.54 91.84 90.25 -
T 2 94.14 85.17 82.84 -
T 3 93.98 - 85.37 -
T 4 - - 86.74 -
Avg 93.55 89.08 87.14 -

SMTMVC

T 1 92.84 92.08 90.87 67.14
T 2 94.94 86.18 83.17 68.35
T 3 94.48 - 86.51 70.14
T 4 - - 88.44 64.12
Avg 94.45 89.18 87.28 66.84

MTMV-MO (proposed)

T 1 93.04 92.05 91.26 68.10
T 2 95.14 87.10 83.04 69.02
T 3 96.02 - 86.14 71.04
T 4 - - 87.11 65.24
Avg 94.54 90.85 88.94 67.57
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Thank You !!

For any further query, please feel free to email me at sayantaniem@gmail.com

We wish you all a great virtual ICPR 2020!!
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