

Multi-Modal Deep Clustering: Unsupervised Partitioning of Images

Background

Data Clustering

Partition data points into groups such that points in each group are more similar to each other than to points in the other groups.

Image Clustering

- Traditional methods (e.g. K-means, GMM, DBSCAN, etc..) do not work well with raw images in pixel-space.
- More meaningful data representation is required for effective clustering.

Deep Clustering

Solve image representation learning and clustering jointly in a unified framework.

Unsupervised Clustering Algorithm

Given images $\{x_i\}_{i=1}^n$, fix *n* targets randomly sampled from a Gaussian Mixture Model:

$$Y = \{y_i | y_i \in \mathbb{R}^d, \|y_i\|_2 = 1\}, \quad |Y| = n$$

Learn model $f_{\theta}: X \to \mathbb{R}^d$ and mapping $P: [n] \to [n]:$ $\min_{P,\theta} \frac{1}{n} \sum \ell(f_{\theta}(x_i), y_{P(i)})$

Optimization:

- 1. Obtain batch of images b and targets c
- 2. Compute $f_{\theta}(X_b)$
- 3. Compute P* by minimizing L w.r.t P
- 4. Compute $\nabla_{\theta} L(\theta)$ using P*
- 5. Update $\theta \leftarrow \lambda \nabla_{\theta} L(\theta)$

(3) Is solved with the Hungarian algorithm

Assign clusters by mixture component association:

$$c_i = argmin_{j \in [k]} \ell(f_{\theta}(x_i), \mu_j)$$

where $\{\mu_i\}_{i=1}^k$ are GMM mean vectors.

Guy Shiran, Daphna Weinshall

School of Computer Science and Engineering, The Hebrew University of Jerusalem

Full Method

Main Procedure

Enhance image features, to facilitate a better clustering, by solving an additional auxiliary self-supervised task of predicting image rotations. **Refinement Stage**

K-means Clusterin

In final stage we relax equally sized mixture component assumption. Discard fixed targets, iteratively apply K-means on $f_{\theta}(X)$ and use cluster assignments as pseudo-targets.

Experimental Results

Clustering results using a ResNet-18 backbone for natural image datasets and a 4-layer CNN for MNIST.

	MNIST		CIFAR-10		CIFAR-100		STL-10		ImageNet-10		Tiny-ImageNet	
	NMI	ACC	NMI	ACC	NMI	ACC	NMI	ACC	NMI	ACC	NMI	ACC
k-means	0.499	0.572	0.087	0.228	0.083	0.129	0.124	0.192	0.119	0.241	0.065	0.025
SC	0.663	0.696	0.103	0.247	0.090	0.136	0.098	0.159	0.151	0.274	0.063	0.022
AE	0.725	0.812	0.239	0.313	0.100	0.164	0.249	0.303	0.210	0.317	0.131	0.041
DEC	0.772	0.843	0.257	0.301	0.136	0.185	0.276	0.359	0.282	0.381	0.115	0.037
JULE	0.913	0.964	0.192	0.272	0.103	0.137	0.182	0.277	0.175	0.300	0.102	0.033
DAC	0.935	0.978	0.396	0.522	0.185	0.238	0.249	0.303	0.394	0.527	0.190	0.066
IIC	0.978	0.992	0.512	0.617	0.224	0.257	0.431	0.499	-	-	-	-
DCCM	-	-	0.496	0.623	0.285	0.327	0.376	0.482	0.608	0.710	0.224	0.108
Ours (avg.)	0.971	0.990	0.703	0.820	0.418	0.446	0.593	0.694	0.719	0.811	0.274	0.119
Ours (ste)	\pm .000	\pm .000	$\pm .011$	<u>+</u> .019	<u>+</u> .003	<u>+</u> .006	<u>+</u> .005	<u>+</u> .013	<u>+</u> .008	<u>+</u> .012	$\pm .001$	$\pm .001$
Ours (best)	0.973	0.991	0.720	0.843	0.423	0.464	0.609	0.741	0.732	0.830	0.277	0.121

Target space

Image Features Evaluation

Evaluate image features of trained ConvNet using a linear

evaluation protocol and by applying K-means.

		CIFAR-10		CIFAR-100			
	K-means		Linear	K-m	Linear		
	NMI	ACC	ACC	NMI	ACC	ACC	
ImNet Labels	0.321	0.407	0.782	0.247	0.281	0.646	
NAT	0.044	0.162	0.315	0.037	0.095	0.177	
RotNet	0.329	0.349	0.740	0.261	0.284	0.543	
NAT+RotNet	0.413	0.511	0.764	0.190	0.232	0.499	
Ours	0.428	0.397	0.869	0.395	0.347	0.662	

Ablation Study

- harms clustering quality.

Summary

- effective representations.

- clustering.

Sobel filters are often used as pre-processing to discourage clustering based on trivial cues such as color. With a rotation loss this is not only unnecessary, it

Rotations	ACC	NMI		
	0.492	0.428		
	0.560	0.463		
\checkmark	0.820	0.703		
\checkmark	0.725	0.610		

Experiments on CIFAR-10.

For the clustering of images we desire meaningful and

We propose a clustering framework that trains a

ConvNet by learning cluster assignments alongside

model parameters by solving a linear assignment

problem using the Hungarian algorithm.

Random image transformations insert prior knowledge of invariance within clusters into model.

Auxiliary rotation loss is very effective in helping model

learn better image features that produce a quality