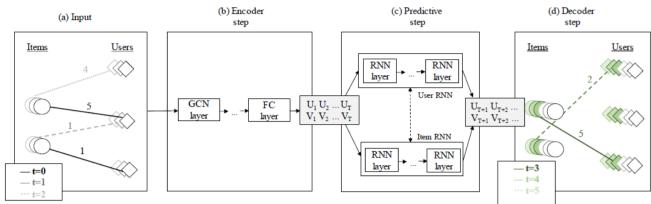
Temporal Collaborative Filtering with Graph Convolutional Neural Networks

Esther Rodrigo Bonet^{1,2}, Duc Minh Nguyen^{1,2} and Nikos Deligiannis^{1,2} ¹ETRO Department, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium ²imec, Kapeldreef 75, B-3001, Leuven, Belgium


Introduction

- **Temporal collaborative filtering (TCF)** methods model non-static aspects behind recommender systems such as the dynamics in users' preferences and social trends around items.
- State-of-the-art TCF methods employ matrixfactorization-based (MF-based) approaches to learn users' and items' representations and recurrent neural networks (RNNs) to model such aspects.
- Recently, graph-neural-network-based (GNNbased) approaches have shown improved performance in providing accurate recommendations over traditional MF-based approaches in non-temporal CF settings.

Results

- We perform comprehensive experiments on the Netflix and MovieLens 1M (ML-1M) datasets.
- We show improved performance of our method over several state-of-the-art MF-based, graphbased, non-temporal and temporal CF models with respect to RMSE and MAE.

Method	Netflix	ML-1M
PMF	0.957	0.883
I-AutoRec	0.979	0.833
U-AutoRec	0.985	0.877
GCMC	1.264	1.001
TG-MC (ours)	0.931	0.834

Method

- We propose a novel TCF method that leverages **user-item interactions** to efficiently predict future ratings.
- We employ GNNs to learn user and item representations, and RNNs to model their temporal dynamics.
- A challenge with this method lies in the increased data sparsity, negatively impacting the quality of representations obtained with GNNs.
- To overcome this, we train a GNN model at each time step using the set of observed interactions accumulated time-wise.

Acknowledgements

This research was supported by funding from the Flemish Government under the "Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen" programme.

Method	RMSE (Netflix)
Temporal MF	1.112
RRN	0.944
TimeSVD++	0.962
NCF	0.947
LFM	0.936
TG-MC (ours)	0.931

Method	MAE (ML-1M)
Temporal MF	0.843
RRN	0.793
AM^N=1	0.777
NTF	0.689
TG-MC (ours)	0.664

References

- Sedhain et al, Autorec: Autoencoders meet collaborative filtering 2015, *ACM*.
- Van den Berget al, Graph Convolutional Matrix Completion 2018, *KDD*.
- Wu et al, Recurrent recommender networks, 2017, *WSDM*.
- Wu et al, Neural tensor factorization for temporal interaction learning, 2019, WSDM.