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Motivation

Problem statement

I Accurate extrinsic calibration of wide baseline multi-camera

systemswith classical Structure-from-Motion methods

requires special calibration equipment and trained operators.

I This is costly and time-consuming, and limits the ease of

adoption of multi-camera 3D scene analysis technologies.

Prior work

I Use human pose estimation models to establish point

correspondences, thus removing the need for any special

equipment [5, 6].

I Challenge: human pose estimation algorithms produce much

less accurate feature points compared to patch-based

methods.

Our contribution
We introduce several novel ideas to improve the accuracy of

human-pose-based extrinsic calibration. In particular:

I A robust reprojection loss more suitable for camera

calibration with human poses.

I We introduce a 3D-human-pose likelihood model to the

objective function of bundle adjustment.
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Method
Preprocessing: Extract body joints from synchronized video

streams using human pose estimation.

Initial estimation of the camera extrinsics and 3D positions of

the body joints following standard SfM approaches with the body

joints as point correspondences between cameras.

Bundle adjustment: To refine the initial estimates, we minimize

an objective function consisting of a modified reprojection error

and prior models on the plausibility of the estimated motion and

poses:

E = Erep + Emotion + Elimb + EKCS

I Robust Reprojection Error:

Erep = 1∑
i,j,t wijt

∑
i,j,t

wijtL(uijt, πi(Ujt)) ,

where L(·, ·) is the Huber loss function, and the weights wijt

depend on the joint detection scores and the distances

between the joints and the cameras.

I Motion Prior: Emotion is the l2-norm of the fourth-order

derivative of the joint positions, to encourage smooth joint

trajectories while accounting for complex human motion.

I Constant Limb Length Constraint: Elimb enforces the

reconstructed limb lengths to stay constant throughout the

whole sequence.

I Body Pose Prior: To encourage the reconstruction of plausible

human poses, EKCS is the average likelihood of the 3D human

poses, given by a PCA model fitted on the Human 3.6M

dataset.

Conclusion
We introduced several ideas in this paper and achieved improved

accuracy for extrinsic camera calibration using human body joints.

We showed that robust loss functions and relevant prior models

are effective in handling errors in human body joint detection.
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Experimental Results

Weevaluate our algorithmon four datasets forwhich ground truth

camera calibration is available: Human 3.6M [2, 3], CMU Panoptic

[4], and the Soccer Juggling and Sword Swing sequences [1].

Puwein et al. [5] Proposed Solution

Pos. Ang. Pos. Ang.

Soccer 5.0 1.0 1.7 0.4

Sword 5.8 1.0 0.9 0.4

Table 1:Comparing our proposed solution compared to [5] on the Soccer and Sword sequences.

Ablation study

H36M Walking H36M WalkTogether Dance Soccer Sword

ID Reproj. Motion KCS Limb Pos. Ang. Pos. Ang. Pos. Ang. Pos. Ang. Pos. Ang.

0 Initial calibration 4.41 ± 2.66 0.54 ± 0.20 5.81 ± 3.25 0.67 ± 0.34 5.56 ± 1.21 0.78 ± 0.24 13.84 ± 3.86 3.52 ± 1.20 19.86 ± 2.48 4.21 ± 0.45

1 4.87 ± 1.50 0.60 ± 0.15 4.11 ± 1.52 0.53 ± 0.20 3.89 ± 0.36 0.54 ± 0.03 3.47 ± 0.05 0.60 ± 0.01 2.46 ± 0.12 1.20 ± 0.00
2 X 2.04 ± 0.77 0.31 ± 0.09 2.88 ± 2.08 0.36 ± 0.22 4.17 ± 0.51 0.49 ± 0.16 1.87 ± 0.09 0.47 ± 0.01 1.10 ± 0.12 0.38 ± 0.02
3 X X 2.04 ± 0.77 0.31 ± 0.09 2.84 ± 2.00 0.35 ± 0.21 4.05 ± 0.44 0.46 ± 0.14 2.04 ± 0.14 0.49 ± 0.02 1.09 ± 0.11 0.38 ± 0.02
4 X X 1.88 ± 0.71 0.29 ± 0.09 2.60 ± 1.85 0.33 ± 0.19 4.04 ± 0.44 0.47 ± 0.15 2.10 ± 0.11 0.49 ± 0.02 1.00 ± 0.08 0.37 ± 0.02
5 X X 2.00 ± 0.76 0.31 ± 0.09 2.85 ± 2.32 0.37 ± 0.25 4.09 ± 0.45 0.46 ± 0.14 1.44 ± 0.09 0.43 ± 0.02 0.89 ± 0.09 0.38 ± 0.01
6 X X X 1.96 ± 0.74 0.30 ± 0.09 2.81 ± 2.25 0.36 ± 0.24 4.01 ± 0.40 0.45 ± 0.13 1.80 ± 0.12 0.48 ± 0.02 0.89 ± 0.08 0.38 ± 0.01
7 X X X 4.36 ± 1.07 0.53 ± 0.11 4.21 ± 1.62 0.52 ± 0.20 4.13 ± 0.53 0.51 ± 0.11 2.16 ± 0.24 0.70 ± 0.02 2.44 ± 0.12 1.00 ± 0.01
8 X X X X 1.89 ± 0.72 0.29 ± 0.09 2.66 ± 2.08 0.34 ± 0.22 4.02 ± 0.42 0.45 ± 0.14 1.66 ± 0.12 0.44 ± 0.02 0.86 ± 0.05 0.38 ± 0.01

9 Plain vanilla BAwith θba = 0.7 2.68 ± 0.79 0.33 ± 0.09 2.81 ± 1.17 0.35 ± 0.13 4.16 ± 0.65 0.46 ± 0.09 2.62 ± 0.09 0.69 ± 0.01 1.32 ± 0.02 0.91 ± 0.00
10 Our solution with θba = 0.7 2.00 ± 0.76 0.31 ± 0.09 2.69 ± 2.09 0.35 ± 0.22 4.03 ± 0.46 0.46 ± 0.15 1.50 ± 0.10 0.42 ± 0.02 0.96 ± 0.07 0.39 ± 0.02

Table 2:Ablation study
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