Pseudo Rehearsal using non photo-realistic images
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Abstract—Deep neural networks forget previously learnt tasks
when they are faced with learning new tasks. This is called
catastrophic forgetting. Rehearsing the neural network with the
training data of the previous task can protect the network from
catastrophic forgetting. Since rehearsing requires the storage
of entire previous data, Pseudo rehearsal was proposed, where
samples belonging to the previous data are generated synthetically
for rehearsal. In an image classification setting, while current
techniques try to generate synthetic data that is photo-realistic,
we demonstrated that Neural networks can be rehearsed on data
that is not photo-realistic and still achieve good retention of the
previous task. We also demonstrated that forgoing the constraint
of having photo realism in the generated data can result in a
significant reduction in the consumption of computational and
memory resources for pseudo rehearsal.

I. MOTIVATION

Artificial neural networks have successfully demonstrated
their ability to learn and perform on tasks that demand
complex cognitive capabilities. However, current Neural
Network architectures are incapable of learning new tasks
sequentially. Whenever a neural network attempts to learn
a new task, it forgets the task that it learnt previously. This
problem is called catastrophic forgetting Generative replay
is a technique where the training data for the previous
task is synthetically generated using a generator. Generative
Adversarial Networks(GAN) are a popular choice for creating
this synthetic data. However, GANs cannot generate synthetic
data for visually complex images. To solve this problem, we
propose usage of Genetic Algorithms to generate the synthetic
data. Instead of generating photo-realistic images, we propose
generating images which when trained upon have the
boundary preserving properties required to prevent forgetting.

II. CONCLUSION

In this work, we demonstrated that in an image classification
setting, pseudo rehearsal can be performed by ignoring the
photo-realism of the generated samples. We also showed that
by ignoring the constraint of photo-realism of the generated
synthetic samples, we can achieve high retention capacities of
the previous task while consuming modest computational and
memory resources. We also demonstrated that the proposed
technique is scalable to visually complex datasets unlike exist-
ing techniques in the literature.
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III. ALGORITHM

Algorithm 1 Synthetic data generation for a class ¢

P: {zg,z1,22...2,,—1} // Random population

|P| =m

while (3x € P): f.(z) <7 do
P = {<z, f.(x) > |Vz € P}
Let, L be a list in descending order of f.(z),Vz € P
P*=1L[0...m %0.25] //top 25% of elements
C = [erossover(P*[j], P*[j + 1])|Vj € [0...|P*| — 1]]
M = [mutation(x)|Vz € P
Mc = [erossover(M[i], M[i +1])|Vi € [0,. .., |M]|—1]]
Proow = P*UCUM U Mg
P = Pew

end while

Here fo(z) = ff‘é—]
e
. j=1
where z is vector of scores for each of the classes 1... K,
c is the given target class, f.(x) is softmax score for class

c on input z and K is the total number of classes.

IV. ENRICHMENT PHASE

The Genetic Algorithm is followed by an Enrichment phase
where the number of synthetic samples are increased using
Gaussian mixture models. It is a two step process. In the first
step, one Gaussian is fitted to each class and in the second step
one Gaussian is fitted to the entire synthetic data.

V. AGREEMENT SCORE

A new metric was also proposed to compare the behaviour of
models trained on synthetic data and original data. Here, the
predictions of the models are compared on a control dataset
irrespective of their correctness.

9
a(Py, Py) = i 100 (1

where Pj; and Py are the predictions of model M and model
N on some test dataset. § is the number of identical predictions,
|T| is the size of the test data.
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Fig. 1: A comparison of Genetically generated images and GAN generated images with Original images.
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Fig. 2: Synthetic data generated using the proposed method. Figure (2a): original dataset. Figure (2b): Genetically generated
samples. Figure (2¢): Phase 1 Enrichment. Figure (2d): Phase 2 Enrichment
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Fig. 3: The learning and retention behaviour of neural network under various rehearsal and pseudo-rehearsal schemes
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Fig. 4: Learning behavior of neural network while training on synthetic data.
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Fig. 5: Results of Ablation studies and computational resource consumption comparisons

| Dataset | GAN Data | Ours |
MNIST Handwritten digits 95.346 % 83.675%
SVHN 86.8% 83.6%
MNIST Fashion products 52.459% 80.977 %
CIFARIO 55.7% 61.8%

TABLE I: Results of Agreement score experiment

| Dataset | Genetic stage | Step1 | Step2 |
MNIST Handwritten digits 44.55% 46.72% | 89.36%
MNIST Fashion 50.56% 51.33% | 81.36%
SVHN 7.3% 11.64% | 76.86%
CIFAR10 16.16% 20.33% | 42.14%

TABLE II: Results of Ablation study done on different stages
of the proposed algorithm



