L@DENet:

A Holistic Approach to Offline Handwritten Chinese and Japanese Text Line Recognition

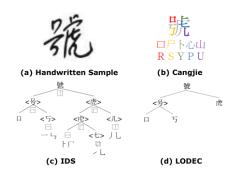
Huu-Tin Hoang*, Chun-Jen Peng*, Hung Vinh Tran, Hung Le

Cinnamon Al

Email: {tin, larry, xing, toni}@cinnamon.is

Huy Hoang Nguyen University of Oulu Email: huy.nguyen@oulu.fi

1.64%


cinnamon Al

1. Introduction

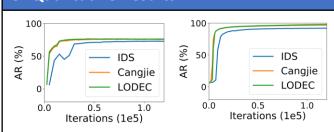
Normally, we would encode the characters set of Japanese and Chinese with one-hot. However, this encoding method is costly and not represent the semantic information of characters.

Therefore, we proposed a novel encoding method LODEC and a deep learning model LODENet that leverages auxiliary ground truths generated by LODEC or other radical-based encoding methods.

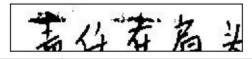
2. LODEC and Character Decomposition

Based on an observation that ones tend to write a radical, in a single stroke with a specific cursive pattern, we proposed **LODEC**, which targets to identify unique shapes of logographic characters rather than fundamental glyphs or partial shapes as in IDS or Cangjie, respectively.

3. LODENet


LODENet Architecture and end-to-end training scheme

4. Qualititative results			
CASIA Dataset			
Wang et al.	88.79%		
LODENet	86.62%		3.37%
LODENet + Wikipedia Text	92.16%		
SCUT-EPT Dataset			


CNN + LSTM + CTC	75.97%
LODENet	76.61%
LODENet + Wikipedia Text	77.61%

Quantitative Results

5. Qualitative Results

Learning curve on SCUT-EPT with different encodings

Ground truth	责任在肩头
CRNN	责近"寿高头 (4)
LODENet	责任"在肩头 (1)
Radical output	^老 贝亻一士"土一尸月头

6. Conclusions

- LODEC encoding that can fully represent all logograms and syllabic characters of Chinese and Japanese.
- An **end-to-end training scheme** that can be plugged in any radical-based encoding method.
- LODENet architecture equipped with the conversion network that learns to transcribe Japanese and Chinese contents from radical-based features.
- **SOTA results** on CASIA and SCUT-EPT, and one private Japanese dataset.