

ResMax: Detecting Voice Spoofing Attacks with Residual Network and Max Feature Map

Il-Youp Kwak¹, Sungsu Kwag², Junhee Lee², Jun Ho Huh², Choong-Hoon Lee², Youngbae Jeon³, Jeonghwan Hwang³, Ji Won Yoon³

Chung-Ang University¹, Samsung Research², Korea University³

ABSTRACT

The "2019 Automatic Speaker Verification Spoofing And Countermeasures Challenge" (ASVspoof) competition aimed to facilitate the design of highly accurate voice spoofing attack detection systems. the competition did not emphasize model complexity and latency requirements; such constraints are strict and integral in real-world deployment. Hence, most of the top performing solutions from the competition all used an ensemble approach, and combined multiple complex deep learning models to maximize detection accuracy – this kind of approach would sit uneasily with real-world deployment constraints. To design a lightweight system, we combined the notions of skip connection (from ResNet) and max feature map (from Light CNN), and evaluated the accuracy of the system using the ASVspoof 2019 dataset. With an optimized constant Q transform (CQT) feature, our single model achieved a replay attack detection equal error rate (EER) of 0.37% on the evaluation set, surpassing the top ensemble system from the competition that achieved an EER of 0.39%.

OBJECTIVES

Why Voice Spoofing Detection?

6-year-old orders \$170 dollhouse, cookies with Amazon's Alexa

TV anchor says live on-air 'Alexa, order me a dollhouse' - guess what Story on accidental order begets story on accidental

Voice Spoofing Detection, Physical Access (PA)

Voice Spoofing Detection, Logical Access (LA)

1 2 3 4 5

METHODS

Spoofing Classification

- Classifying Human or Speaker $f: \mathbf{X} \stackrel{j_{\theta}}{\longrightarrow} \mathbb{R}_{[0,1]}$
- Dimension for x is (n_freq, n_time)
- **Data**: (\mathbf{x}, y) $\mathbf{x} \in \mathbb{R}^{(n_f, n_t)}, y \in \{0, 1\}$ *m* training examples $\{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})\}$ $X = [\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}]$ $Y = [y^{(1)}, \dots, y^{(m)}]$
- Given $\mathbf{x} \in \mathbb{R}^{(n_f, n_t)}$, want $\hat{y} = P(y = 1 | \mathbf{x}) = f_{\hat{\theta}}(\mathbf{x}) \in \mathbb{R}^{[0,1]}$
- Objective is to minimize Cost, $C(\theta)$, w.r.t θ :

$C(\theta) = \sum_{i=1}^{m} L(f_{\theta}(\mathbf{x}_i), y_i)$

What would be a good model $(f_{\hat{\theta}}(\mathbf{x}))$?

Automatic Speaker Verification Spoofing And Countermeasures Challenge (ASVspoof 2015, 2017 and 2019)

Wu et al. (2015) ASVspoof 2015: the First Automatic Speaker Verification Spoofing and Countermeasures Challenge Kinnunen et al. (2017) The asvspoof 2017 challenge: Assessing the limits of replay spoofing attack detectior Todisco et al (2019) ASVspoof 2019: Future Horizons in Spoofed and Fake Audio Detectior

Deep-learning based methods and ensemble solutions are dominating in voice liveness detection challenge

How to develop well performing light-weighted model?

light-weighted ResMax Architecture

RESULTS

High performance of ResMax

t-DCF (Dev) | EER (Dev) | t-DCF (Eval) | EER (Eval) | #Mo | # Params

1	105	-	-	0.0069	0.22	-	-	
2	T45	0.0000	0.000	0.0510	1.86	5	1484K	
3	CQT-1_100-ResMax	0.0179	0.56	0.0600	2.19	1	262K	
4	T60	0.0	0.0	0.0755	2.64	4	-	
5	T24	-	-	0.0953	3.45	-	-	
6	T50	0.027	0.90	0.1118	3.56	-	-	
	T45 (FFT-LCNN)	0.0009	0.040	0.1028	4.53	1	371K	
	T45 (LFCC-LCNN)	0.0043	0.157	0.1000	5.06	1	371K	
PA								
-#	M - J - I	L DCE (D	EED (D)	DOE /E I	FFD /F 1	113.4	# D	
#	Model	t-DCF (Dev)	EER (Dev)	t-DCF (Eval)	EER (Eval)	# <i>Mo</i>	# Params	
1	CQT-1_120-ResMax	0.0066	0.31	0.0091	0.37	# <i>Mo</i>	# Params 262K	
1 2						# <i>Mo</i> 1 -		
1 2 3	CQT-1_120-ResMax		0.31	0.0091	0.37	1		
1 2	CQT-1_120-ResMax T28	0.0066	0.31	0.0091 0.0096	0.37 0.39	1 -	262K -	
1 2 3	CQT-1_120-ResMax T28 T45	0.0066 - 0.0001	0.31	0.0091 0.0096 0.0122	0.37 0.39 0.54	1 - 3	262K - 1113K	
1 2 3 4	T28 T45 T44	0.0066 - 0.0001 0.003	0.31 - 0.0154 0.129	0.0091 0.0096 0.0122 0.0161	0.37 0.39 0.54 0.59	3 5	262K - 1113K 5811K	
1 2 3 4 5	T28 T45 T10	0.0066 - 0.0001 0.003 0.0064	0.31 - 0.0154 0.129 0.24	0.0091 0.0096 0.0122 0.0161 0.0168	0.37 0.39 0.54 0.59 0.66	1 - 3 5 6	262K - 1113K 5811K	
1 2 3 4 5	T28 T45 T10 T24	0.0066 - 0.0001 0.003 0.0064	0.31 - 0.0154 0.129 0.24	0.0091 0.0096 0.0122 0.0161 0.0168	0.37 0.39 0.54 0.59 0.66 0.77	1 - 3 5 6	262K - 1113K 5811K	

Non-speech part have information?

vorked better without the non-speech part remover. The barplot indicates averaged EER with one standard deviation error bar.

The longer you listen the better the performance

evaluation sets in LA and PA data. The barplot indicates averaged EER with one standard deviation error bar.

Performance depend on replay device quality

DETECTION PERFORMANCE ON THE ASVSPOOF2019 PHYSICAL ACCESS EVALUATION SETS IN VARIOUS ENVIRONMENTS. THE A, B, C REPRESENT THE CLASSES OF EACH FACTOR WHICH IS WELL DESCRIBED IN [5]. ALL

	Factors	A	В	C
	Room size (S)	0.0047	0.0044	0.0041
Verification Env.	T60 (R)	0.0055	0.0029	0.0038
	Talker-to-ASV dis-	0.0059	0.0036	0.0042
	tance			
Decording Fry	Attacker-to-talker	0.0051	0.0036	0.0041
Recording Env.	distance (D_a)			
	Replay Device	0.0067	0.0036	0.0009
	Quality (Q)			

High performance on best performing TTS, VC systems

D	Type	Description	EER	0.00
)7	TTS	vocoder + GAN	0.0022	0.08
)8	TTS	neural waveform	0.0388	
)9	TTS	vocoder	0.0003	0.06
10	TTS	neural waveform	0.0045	c T
11	TTS	griffin lim	0.0039	<u>ш</u> 0.04
12	TTS	neural waveform	0.0002	" II
13	TTS,VC	waveform concatenation & filtering	0.0051	0.02
14	TTS,VC	vocoder	0.0012	
15	TTS,VC	neural waveform	0.0030	
16	TTS	waveform concatenation	0.0039	A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
17	VC	waveform filtering	0.0561	ID
18	VC	vocoder	0.0225	
19	VC	spectral filtering	0.0317	Fig. 5. The averaged EER for 13 attack types in evaluation set. The barplot
				indicate averaged FFR with one standard deviation error bar

Known attacks are A16,A19 and 4 others

detection accuracy.

CONCLUSIONS

Existing voice spoofing attack detection solutions have been designed without considering real-world model complexity and detection latency requirements, and often consist of multiple heavy and complex deep learning models. Such solutions would not be considered suitable given the tight model size and latency requirements. In comparison, our CQT-1 120-ResMax model used only a single deep learning model with far fewer model parameters to outperform the top performing PA solution from evaluation set, achieving an EER of 0.37% compared to the current best competition EER of 0.39%, which is an ensemble solution. As for the LA set, we rank third with an EER of 2.19%, just behind the second best ensemble solution that achieved an EER of 1.86% in the evaluation set. Among the single model systems, although CQT-1 120-ResMax used the least number of parameters, it demonstrated significant superiority in

ACKNOWLEDGMENT

This work was conducted at Samsung Research. The authors would like to thank Samsung Research Security Team for the helpful discussions. IK was supported by the National Research Foundation of Korea (NRF) grant funded by Ministry of Science and ICT (2020R1C1C1A01013020)

CONTACTS

For any questions, feel free to ask me via ikwak2@cau.ac.kr