
KERNEL-BASED GRAPH CONVOLUTIONAL NETWORKS

Hichem SAHBI

CNRS, Sorbonne University, Paris, France
ICPR 2020

Motivation and Contribution

Motivation

•Graph convolutional networks (GCNs) aim at generalizing deep learning to arbitrary

irregular domains.

•Most of existing spatial GCNs follow a neighborhood aggregation scheme, where convo-

lutions are recursively obtained by aggregating neighboring node representations using

averaging or sorting operations.

•However, these operations are either ill-posed (mainly translation and receptive fields in

convolutions) or weak to be discriminant.

• For highly nonlinear (and low dimensional) input graph signals (such as 3D skeletons in

action recognition), relying on convolutions in the input space may limit the discrimina-

tion power of the learned graph representations.

• Indeed, aggregation based on averaging (when achieved in the input space) may dilute

input node representations prior to convolution.

•An explicit expansion of the input node representations may enhance the discrimina-

tion power but comes at the expense of a substantial increase in the number of training

parameters (thereby the risk of overfitting).

• It also increases the computational complexity both in space and time.

Contribution

•We consider, instead, an implicit mapping of the input graph signal in a RKHS.

•The method achieves an averaging aggregation and convolution in that space, in order to

enhance the representational power of nodes and also the learned graph representations

(without increasing the number of training parameters).

•Experiments conducted on the task of skeleton-based action recognition show the supe-

riority of the proposed method against different baselines as well as the related work.

Graph convolutional networks at a glance

•Let G = (V , E) be a graph endowed with (i) a signal {s(u) ∈ R
D}u and (ii) an adja-

cency matrix A. Consider gθ = (Vθ,Gθ) as a graphlet with |Vθ| ≪ |V| and |Eθ| ≪ |E|.
Following standard GCNs

(G ⋆ gθ)u = σ(Kθ(u)), with Kθ(u) =

〈

∑

u′

s(u′).[Ar]uu′, wθ

〉

.

• In spite of being agnostic to any arbitrary permutation of nodes in G and gθ, the above

definition suffers from limited discrimination power, when s is low dimensional.

Our kernel-based graph convolutional networks

•Considering κ as a symmetric positive definite function (i.e., ∃ψ : X → H, s.t.,

κ(s(u′), s(v)) = 〈ψ(s(u′)), ψ(s(v))〉).

• For a particular setting of wθ as 1
|Vθ|

∑N
i=1α

θ
iψ(s(v

θ
i)) related to the representer theorem

(Wahba 1971, Scholkopf 2001), with {vθi }i ⊂ Vθ, {α
θ
i}i ⊂ R; the convolutional operator

defined earlier can be rewritten as

Kθ(u) =
1

|Nr(u)|.|Vθ|

∑

u′∈Nr(u)

(N
∑

i=1

αθi κ(u
′, vθi)

)

.

•This evaluation does not require any explicit alignment between node pairs and it is

thereby still invariant to any arbitrary permutation of nodes in V and Vθ.

•The strength of this kernel trick is its ability to handle nonlinear data as node represen-

tations are mapped into a high dimensional (and more discriminating) space H = R
H.

•E.g., the polynomial κ(s(u), s(v)) = 〈s(u), s(v)〉p, its mapping is ψ(s(u)) = s(u)⊗· · ·⊗
s(u) (Maji 2012, Vedaldi 2012, Sahbi 2015).

•As H grows exponentially w.r.t p and polynomially w.r.t D, the kernel form is rather

computationally more efficient.

•Considering a non-parametric setting, when only {αθi}i are allowed to vary in wθ =
1

|Vθ|

∑

iα
θ
iψ(v

θ
i), and when H ≫ |{αθi}i|, the kernel trick is computationally advanta-

geous with few parameters.

•One question that arises is how to make this approach parametric; to maintain the ker-

nel trick advantage without significantly increasing the computational cost when naively

evaluating {κ(., .)}.

• Solutions such as sampling and reduced set are both limited in this particular setting;

sampling may generate a smaller (but biased) fixed set of support vectors {vθi }i, while

reduced set requires solving a difficult pre-image problem (Burges 1997).

•Our alternative, in this work, is to control the size of {vθi }i while allowing entries in

{vθi }i to vary as a part of the end-to-end GCN (and also kernel) learning.

•This also allows modeling a larger class of filters {wθ} that better fit the classification

task at hand (see also experiments).

Neural Consistency and Architecture Design

• In contrast to usual convolutional operators on graphs, the kernel one cannot be straight-

forwardly evaluated using standard neural units as kernels may have general forms.

•Hence, modeling requires adapting kernel-GCNs to the usual definition of neural units.

Definition 1 (Neural consistency) Let u.,d (resp. v.,d) denote the dth dimension of the

signal in a given node u (resp. v). For a given (fixed or learned) v, a kernel κ is referred

to as “neural-consistent” if

κ(u, v) = σ3

(

∑

d

σ2(σ1(u.,d).ωd)

)

,

with ωd = σ4(v.,d) and being σ1, σ2, σ3, σ4 any arbitrary real-valued activation functions.

• For inner product-based kernels: linear 〈u, v〉, polynomial 〈u, v〉p, and tanh(a〈u, v〉+ b)
neural consistency is straightforward.

• For shift-invariant ones such as the gaussian, one may obtain neural consistency by

rewriting exp(−β‖u − v‖22) = σ3
(
∑

d σ2(σ1(u.,d).ωd)
)

with σ1(.) = exp(.), σ2(.) =
log(.)2, σ3(.) = exp(−β(.)) and ωd = exp(−v.,d).

•Other kernels (including Laplacian, inverse multiquadric, power, Cauchy and histogram

intersection) are also neural consistent (see paper for the setting of their σ1, σ2, σ3, σ4).

n

A

V
1’s 1’sα1’s

n n n n n n C

D

(K
×
N
)×
D

K
×
N

K K
×
n

K

n

σ1() σ2() σ3()
1/γ γ log() exp()

γ-weighted convolutionKernel evaluation

ReLU

log()

Wθ = σ4(Vθ)

Pooling and Softmax

Kθ(u) =
1

|Vθ|

∑

u′

exp

(

logAuu′ + log

N
∑

i=1

αθi κ(u
′, vθi)

)

.

Experiments

•Evaluation Set (SBU): 282 skeleton sequences acquired using the Microsoft Kinect

sensor belonging to 8 categories. Skeleton representation is based on temporal chunk-

ing.
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

P
P
P
PP

kernels

GCNs
Standard GCN with different # of KPCA dimensions (H) Our KGCN

10 50 100 200 300 400 500 1000 2000 3000

Linear 92.3077 overdim overdim overdim overdim overdim overdim overdim overdim overdim 90.7692

Poly 89.2308 95.3846 92.3077 93.8462 93.8462 93.8462 93.8462 overdim overdim overdim 93.8462

tanh 89.2308 93.8462 90.7692 93.8462 90.7692 92.3077 93.8462 92.3077 93.8462 92.3077 96.9231

sigmoid 93.8462 90.7692 93.8462 92.3077 92.3077 92.3077 92.3077 96.9231 93.8462 92.3077 95.3846

Gaussian 92.3077 92.3077 92.3077 92.3077 96.9231 93.8462 93.8462 93.8462 93.8462 93.8462 98.4615

Laplacian 92.3077 93.8462 95.3846 92.3077 90.7692 90.7692 95.3846 93.8462 90.7692 90.7692 98.4615

Power 90.7692 92.3077 95.3846 92.3077 92.3077 95.3846 95.3846 93.8462 93.8462 92.3077 96.9231

IMQ 87.6923 92.3077 95.3846 95.3846 93.8462 93.8462 90.7692 95.3846 93.8462 93.8462 95.3846

Log 93.8462 92.3077 92.3077 95.3846 93.8462 93.8462 95.3846 90.7692 95.3846 90.7692 96.9231

Cauchy 93.8462 95.3846 95.3846 92.3077 96.9231 93.8462 92.3077 95.3846 92.3077 93.8462 98.4615

HI 93.8462 92.3077 89.2308 90.7692 92.3077 92.3077 87.6923 87.6923 90.7692 87.6923 96.9231

time/epoch (s) 0.032 0.057 0.072 0.113 0.150 0.190 0.229 0.440 0.840 1.252 0.210

❵
❵
❵

❵
❵

❵
❵
❵

❵
❵

❵
❵
❵

❵
❵

❵
❵

❵
❵

❵
❵

❵
❵
❵

❵
❵

❵
❵
❵

❵
❵

❵
❵

❵
❵
❵

❵

of Filters (K)

of SVs (N)
1 4 8

1 84.6154 84.7552 85.1748

5 93.1469 95.3846 92.8671

10 92.1678 95.1049 95.1049

(raw coordinates)

Temporal Chunking
s(v)

Motion trajectory (v)

Method Accuracy

GCNConv (Kipf et al. ICLR 2017) 90.00

ArmaConv (Bianchi et al, Arxiv 2019) 96.00

SGCConv (Wu et al, Arxiv 2019) 94.00

ChebyNet (Defferrard et al., NIPS 2016) 96.00

Raw coordinates (Yun et al., CVPR 2012) 49.7

Joint features (Yun et al., CVPR 2012) 80.3

Interact Pose (Ji et al., ICMEW 2014) 86.9

CHARM (Li et ak, ICCV 2015) 83.9

HBRNN-L (Du et al, CVPR 2015) 80.35

Co-occurence LSTM (Zhu et al. AAAI 2016) 90.41

ST-LSTM (Liu et al. ECCV 2016) 93.3

Topological pose ordering (Baradel et al. Arxiv 2017) 90.5

STA-LSTM (Song et al., AAAI 2017) 91.51

GCA-LSTM (Liu et al., IEEE TIP2018) 94.9

VA-LSTM (Zhang et al., ICCV 2017) 97.2

DeepGRU (Maghoumi et al., Arxiv 2018) 95.7

Riemannian manifold trajectory (Kacem et al., IEEE PAMI 2018) 93.7

Our best KGCN 98.43

