DETECTING RARE CELL POPULATIONS IN FLOW CYTOMETRY DATA USING UMAP

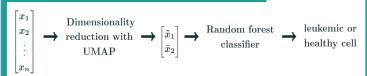
Lisa Weijler¹, Markus Diem¹, Michael Reiter¹, Margarita Maurer-Granofszky², Angela Schumich², and Michael Dworzak²

¹TU WIEN, ²CCRI

BACKGROUND

We present an approach based on unsupervised Uniform Manifold Approximation^[1] (UMAP) and supervised classification to detecting small cell populations in flow cytometry (FCM) samples with a focus on minimal residual disease (MRD) quantification to monitor Acute Lymphoblastic Leukemia (ALL) treatment response. A common issue within automated FCM data analysis is the lack of (labeled) training data; an approach operating on least possible number of training samples is of considerable value.

METHODS



Using **UMAP** to embed FCM features into a latent 2D space prior to classification by **Random Forest**^[2] (RF)

Comparison with a state-of-the-art method^[3] based on Gaussian mixture manifolds (GMM) on varying training set sizes Comparison with alternative embedding dimensionality and feature transform methods,

t-SNE $^{[4]}$, PCA $^{[5]}$, and LLE $^{[6]}$

RESULTS

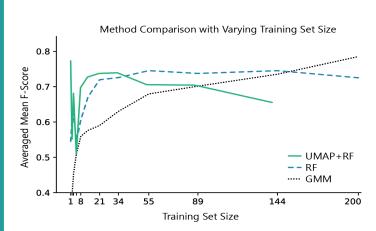


Figure 1: Comparison of Gaussian Mixture Manifolds (GMM), Random Forest (RF) and feature transformation with UMAP before RF classification (UMAP+RF) in terms of average F₁-score (vertical axis) for different training set size N (horizontal axis).

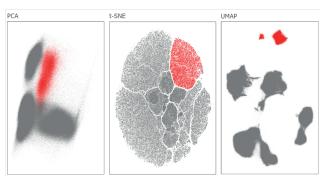


Figure 2: 8 training samples embedded to a 2D space with PCA (left), t-SNE (middle) and UMAP (right). Leukemic cells are shown in red.

Table 1: 8 samples randomly chosen are used for training. Precision (p), recall (r), average F_1 -score (avg F_1), and median F_1 -score (med F_1) are calculated per single cell.

Method	N	p	\mathbf{r}	avg F_1	$\operatorname{med} F_1$
PCA+RF	8	0.362	0.656	0.377	0.324
t-SNE+RF	8	0.696	0.747	0.615	0.693
LLE+RF	8	0.725	0.729	0.621	0.730
UMAP+RF (6D)	8	0.823	0.687	0.688	0.785
$_{ m UMAP+RF}$	8	0.790	0.758	0.697	0.833

CONCLUSION

- proposed method allows for a training set size reduction of more than 90% (N=144 to N=8) in the problem setting discussed
- performance of the standard classifier can be improved significantly by combining it with a preceding unsupervised learning step involving UMAP
- ► UMAP proves superior to other dimension reduction methods in terms of run time performance and F₁-score

REFERENCES

- [1] L. McInnes et al., UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. https://arxiv.org/abs/1802.03426
- [2] L. Breiman, Random Forests. Machine learning, 45(1): 5-32, 2001
- [3] M. Reiter et al., Automated Flow Cytometric MRD Assessment in Childhood Acute B-Lymphoblastic Leukemia Using Supervised Machine Learning. Cytometry, 95: 966-975, 2019.
- [4] L. van der Maaten, Accelerating t-sne using tree-based algorithms. Journal of Machine Learning Research, 15(1): 3221–3245, 2014.
- [5] K. Pearson F.R.S., LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11): 559–72, 1901
- [6] S. T. Roweis et al., Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 290(5500): 2323–2326, 2000.

