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Highlights
• Goal: Domain generalization for medical image segmentation from single source training data, in

presence of large domain shifts.
• Solution: Enlarging the scope of train data distributions through transformation of the given

examples and employing consistency regularization against predictions on the non-transformed
inputs.

• Contribution: Progressive Adversarial Semantic Segmentation (PASS) for improved and consistent
pixel-wise segmentation predictions without requiring any domain-specific data.
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Figure 1: Consistency of the in-domain and cross-domain segmentation predictions by our PASS
model: (Top) Visualization of retinal vessel segmentation from a fundus image when trained on the
ARIA and CHASE datasets. (Bottom) Segmentation of a chest X-ray from the MCU dataset when the
model is trained on the MCU, JSRT, and CHN datasets.

Methods
• A progressive U-Net with some careful adjustments plus side-adversary and side-supervision

capabilities at different resolutions of the segmentation predictions.
• A shape encoder matches the latent representation of the stacked input and segmentation output

with the stacked input and reference so that the model becomes shape-aware while mapping an
input to the segmentation mask.
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Figure 2: Schematic of the PASS model. The segmentation mask generator S takes either input x
or its transformed version xt = t(x). The generated side outputs are passed to the corresponding
discriminators, D1, D2, and D3, and the final outputs yt or ŷ are passed to the discriminator D4. The
shape encoder E also takes y or ŷ concatenated with x as input to yield the latent vector z or ẑ.
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L
seg
S (ŷ, ŷt) =

∑N
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∑K
k=1 ||f (xk, yk)− f (xk, ŷk)||2 Ladv
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Table 1: Learning objectives for the three networks in the proposed PASS model.

Experiment Details

Dataset #Fundus images Data splits Dataset #X-ray images Data splits

Total Healthy Diseased Train Val Test Total Healthy Diseased Train Val Test

DRIVE 40 33 7 18 2 20 MCU 138 80 58 93 10 35

STARE 20 10 10 10 2 8 JSRT 247 93 154 111 13 123

CHASE 28 20 8 17 5 6 CHN 566 279 287 381 43 142

ARIA 143 61 82 121 5 17

HRF 45 15 30 26 5 14

Table 2: Partitioning of the fundoscopic and chest X-ray datasets used in our experiments.

• Inputs: All the images were resized and normalized to 256× 256× 3 for the color fundus images
and 256× 256× 1 for the monochrome chest X-rays before feeding them to the network.

• Networks: The segmentor S utilizes 3× 3 convolutions with the following feature map sizes: 16, 16,
32, 32, 64, 64, 128, 128 in the contraction; 256, 256 in the bottleneck; 128, 128, 64, 64, 32, 32, 16, 16 in
the expansion; and a single-channel convolution to obtain the final output.

• Transformation: Within t(x) for every x, left-right flip was performed with 0.5 probability, sharpen
by no to full effect, rotate by −90◦ to 90◦, and shear by −8◦ to 8◦.

Results
• Vasculature Segmentation: In vessel segmentation, PASS achieved an overall average Dice score

of 85.30 and cross-domain score of 83.74 (domain gap of 8.32), when trained on the small CHASE
dataset.

• When trained on the relatively larger ARIA dataset, the overall average Dice score of 88.72 and
cross-domain score of 87.88 were achieved with domain gap of 4.22.

Model Train on −→ CHASE ARIA

Test on −→ CHASE DRIVE ARIA STARE HRF Avg CHASE DRIVE ARIA STARE HRF Avg

U-Net 80.40 63.20 64.50 66.76 63.82 67.74 76.70 77.30 72.00 71.28 72.30 73.90
U-Net+CRF 81.20 65.40 62.60 56.40 63.60 65.80 78.40 69.50 73.00 64.60 73.50 71.80
PU-Net 81.58 64.04 63.03 66.20 62.66 67.50 76.7 77.3 72.0 71.28 72.3 73.9
AttnU-Net 81.37 65.23 62.91 64.28 65.72 67.90 76.7 77.3 72.0 71.28 72.3 73.9
ProgU-Net 82.91 61.02 63.28 66.58 63.43 67.44 47.21 64.54 70.56 66.57 60.17 61.81
ProgU-NetSS 80.16 62.13 62.41 65.44 63.78 66.78 57.96 65.93 74.47 69.08 60.08 65.50
V-GAN 79.70 71.50 64.20 61.00 66.40 68.50 68.70 75.80 69.90 66.20 69.30 70.00
AU-Net 82.20 63.20 61.84 67.17 63.37 67.56 68.06 70.21 78.12 74.95 69.69 72.21
APPU-Net 82.58 62.50 61.22 66.17 62.60 67.01 66.20 69.68 78.48 76.34 69.31 72.00
UDA 72.30 69.30 68.20 64.70 67.40 68.40 71.50 72.90 73.20 71.30 70.70 71.90
ErrorNet 81.50 73.20 66.50 65.20 68.60 71.00 76.70 78.90 72.00 74.00 72.60 74.80
PASS without t(x) 89.06 80.76 80.72 82.72 75.26 81.70 85.06 88.14 91.92 90.78 82.62 87.70
PASS 91.96 84.96 84.18 86.84 78.57 85.30 86.32 90.55 92.08 91.50 83.15 88.72

Table 3: Comparison between PASS and other performance baselines for retinal vessel segmentation.

• Pulmonary Segmentation: With PASS, we have a domain gap of only 1.32 when trained on MCU,
2.39 when trained on JSRT, and 0.44 when trained on CHN.

• The poorer performance of the PASS model without t(x) justifies its inclusion and the logit-wise
distribution matching as the consistency regularization.

Model Train on −→ MCU JSRT CHN

Test on −→ MCU JSRT CHN Avg MCU JSRT CHN Avg MCU JSRT CHN Avg

U-Net 97.67 39.39 94.48 77.18 92.00 95.02 90.54 92.58 93.72 43.46 95.84 77.67
PU-Net 97.89 21.24 97.84 72.33 84.97 94.94 73.68 84.53 93.57 73.88 95.90 87.78
AttnU-Net 97.86 30.31 94.07 74.08 6.70 94.95 65.00 55.55 81.25 74.24 95.56 83.68
ProgU-Net 97.83 10.98 91.32 66.71 34.89 95.20 86.28 72.12 84.79 60.03 95.35 80.06
ProgU-NetSS 97.90 33.98 95.32 75.33 13.16 95.09 65.00 57.75 94.24 67.29 95.63 85.72
AU-Net 97.86 94.68 95.08 95.87 89.12 97.85 92.46 93.14 95.58 95.88 96.22 95.89
APPU-Net 97.81 95.07 94.77 95.88 90.46 97.80 91.76 93.34 95.72 96.25 96.11 96.03
CyUDA 95.61 92.84 – 94.23 – – – – – – – –
SeUDA 95.61 94.51 – – – – – – – – – –
CoDAGAN – – – – 84.58 96.45 88.99 90.01 – – – –
PASS without t(x) 97.74 96.43 96.76 96.98 95.11 98.26 95.92 96.43 96.62 96.11 97.61 96.68
PASS 98.22 96.56 97.24 97.34 95.70 98.27 96.06 96.68 97.27 97.15 97.65 97.36

Table 4: Comparison between PASS and other performance baselines for pulmonary segmentation.

Conclusions
• PASS, an innovative semantic segmentation model mitigates the domain shift problem in learning

from small annotated training datasets.

• Future work will focus on evaluating PASS on other image segmentation tasks as well as assessing
its effectiveness in iterative and active learning settings.
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