

# **Progressive Adversarial Semantic Segmentation**

Abdullah-Al-Zubaer Imran<sup>1</sup>, Demetri Terzopoulos<sup>1,2</sup> <sup>1</sup>UCLA Computer Science Department, Los Angeles, CA, USA <sup>2</sup>VoxelCloud, Inc., Los Angeles, CA, USA

Correspondence:

aimran@Stanford.edu | http://web.stanford.edu/~aimran/



# Highlights

- Goal: Domain generalization for medical image segmentation from single source training data, in presence of large domain shifts.
- Solution: Enlarging the scope of train data distributions through transformation of the given examples and employing consistency regularization against predictions on the non-transformed inputs.
- Contribution: Progressive Adversarial Semantic Segmentation (PASS) for improved and consistent pixel-wise segmentation predictions without requiring any domain-specific data.



## **Experiment Details**

| Dataset | #Fundus images |           |          | Data splits |     |      | Dataset | #X-ray images |         |          | Data splits |     |      |
|---------|----------------|-----------|----------|-------------|-----|------|---------|---------------|---------|----------|-------------|-----|------|
|         | Total          | l Healthy | Diseased | Train       | Val | Test |         | Total         | Healthy | Diseased | Train       | Val | Test |
| DRIVE   | 40             | 33        | 7        | 18          | 2   | 20   | MCU     | 138           | 80      | 58       | 93          | 10  | 35   |
| STARE   | 20             | 10        | 10       | 10          | 2   | 8    | JSRT    | 247           | 93      | 154      | 111         | 13  | 123  |
| CHASE   | 28             | 20        | 8        | 17          | 5   | 6    | CHN     | 566           | 279     | 287      | 381         | 43  | 142  |
| ARIA    | 143            | 61        | 82       | 121         | 5   | 17   |         |               |         |          |             |     |      |
| HRE     | 45             | 15        | 30       | 26          | 5   | 14   | _       |               |         |          |             |     |      |

MCU (98.99) ISRT (97.27) CHN (98.60) Figure 1: Consistency of the in-domain and cross-domain segmentation predictions by our PASS model: (Top) Visualization of retinal vessel segmentation from a fundus image when trained on the ARIA and CHASE datasets. (Bottom) Segmentation of a chest X-ray from the MCU dataset when the model is trained on the MCU, JSRT, and CHN datasets.

#### Methods

- A progressive U-Net with some careful adjustments plus side-adversary and side-supervision capabilities at different resolutions of the segmentation predictions.
- A shape encoder matches the latent representation of the stacked input and segmentation output with the stacked input and reference so that the model becomes shape-aware while mapping an input to the segmentation mask.

### Table 2: Partitioning of the fundoscopic and chest X-ray datasets used in our experiments.

- Inputs: All the images were resized and normalized to  $256 \times 256 \times 3$  for the color fundus images and  $256 \times 256 \times 1$  for the monochrome chest X-rays before feeding them to the network.
- Networks: The segmentor S utilizes  $3 \times 3$  convolutions with the following feature map sizes: 16, 16, 32, 32, 64, 64, 128, 128 in the contraction; 256, 256 in the bottleneck; 128, 128, 64, 64, 32, 32, 16, 16 in the expansion; and a single-channel convolution to obtain the final output.
- **Transformation**: Within t(x) for every x, left-right flip was performed with 0.5 probability, sharpen by no to full effect, rotate by  $-90^{\circ}$  to  $90^{\circ}$ , and shear by  $-8^{\circ}$  to  $8^{\circ}$ .

### Results

- Vasculature Segmentation: In vessel segmentation, PASS achieved an overall average Dice score of 85.30 and cross-domain score of 83.74 (domain gap of 8.32), when trained on the small CHASE dataset.
- When trained on the relatively larger ARIA dataset, the overall average Dice score of 88.72 and cross-domain score of 87.88 were achieved with domain gap of 4.22.

|                     | Train on $\rightarrow$ CHASE |       |       |       |       |       |       | ΔΡΙΛ  |       |       |       |       |       |  |  |
|---------------------|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| Model               | If all $0\Pi \rightarrow$    |       |       |       |       |       |       |       |       |       |       |       |       |  |  |
|                     | Test on $\rightarrow$        | CHASE | DRIVE | ARIA  | STARE | HRF   | Avg   | CHASE | DRIVE | ARIA  | STARE | HRF   | Avg   |  |  |
| U-Net               |                              | 80.40 | 63.20 | 64.50 | 66.76 | 63.82 | 67.74 | 76.70 | 77.30 | 72.00 | 71.28 | 72.30 | 73.90 |  |  |
| U-Net+CRF           |                              | 81.20 | 65.40 | 62.60 | 56.40 | 63.60 | 65.80 | 78.40 | 69.50 | 73.00 | 64.60 | 73.50 | 71.80 |  |  |
| PU-Net              |                              | 81.58 | 64.04 | 63.03 | 66.20 | 62.66 | 67.50 | 76.7  | 77.3  | 72.0  | 71.28 | 72.3  | 73.9  |  |  |
| AttnU-Net           |                              | 81.37 | 65.23 | 62.91 | 64.28 | 65.72 | 67.90 | 76.7  | 77.3  | 72.0  | 71.28 | 72.3  | 73.9  |  |  |
| ProgU-Net           |                              | 82.91 | 61.02 | 63.28 | 66.58 | 63.43 | 67.44 | 47.21 | 64.54 | 70.56 | 66.57 | 60.17 | 61.81 |  |  |
| ProgU-NetSS         |                              | 80.16 | 62.13 | 62.41 | 65.44 | 63.78 | 66.78 | 57.96 | 65.93 | 74.47 | 69.08 | 60.08 | 65.50 |  |  |
| V-GAN               |                              | 79.70 | 71.50 | 64.20 | 61.00 | 66.40 | 68.50 | 68.70 | 75.80 | 69.90 | 66.20 | 69.30 | 70.00 |  |  |
| AU-Net              |                              | 82.20 | 63.20 | 61.84 | 67.17 | 63.37 | 67.56 | 68.06 | 70.21 | 78.12 | 74.95 | 69.69 | 72.21 |  |  |
| APPU-Net            |                              | 82.58 | 62.50 | 61.22 | 66.17 | 62.60 | 67.01 | 66.20 | 69.68 | 78.48 | 76.34 | 69.31 | 72.00 |  |  |
| UDA                 |                              | 72.30 | 69.30 | 68.20 | 64.70 | 67.40 | 68.40 | 71.50 | 72.90 | 73.20 | 71.30 | 70.70 | 71.90 |  |  |
| ErrorNet            |                              | 81.50 | 73.20 | 66.50 | 65.20 | 68.60 | 71.00 | 76.70 | 78.90 | 72.00 | 74.00 | 72.60 | 74.80 |  |  |
| PASS without $t(x)$ |                              | 89.06 | 80.76 | 80.72 | 82.72 | 75.26 | 81.70 | 85.06 | 88.14 | 91.92 | 90.78 | 82.62 | 87.70 |  |  |
| PASS                |                              | 91.96 | 84.96 | 84.18 | 86.84 | 78.57 | 85.30 | 86.32 | 90.55 | 92.08 | 91.50 | 83.15 | 88.72 |  |  |



**Figure 2:** Schematic of the PASS model. The segmentation mask generator *S* takes either input *x* or its transformed version  $x_t = t(x)$ . The generated side outputs are passed to the corresponding discriminators,  $D_1$ ,  $D_2$ , and  $D_3$ , and the final outputs  $y_t$  or  $\hat{y}$  are passed to the discriminator  $D_4$ . The shape encoder *E* also takes *y* or  $\hat{y}$  concatenated with *x* as input to yield the latent vector *z* or  $\hat{z}$ .

| S Loss | D Loss | E Loss |  |  |  |
|--------|--------|--------|--|--|--|
|        |        |        |  |  |  |

 $L_S^{\text{seg}} = \sum_{k=1}^K w_k L_S^{\text{Dice}}(y_k, \hat{y}_k)$ 

 $L_{S}^{\text{seg}}(\hat{y}, \hat{y}_{t}) = \sum_{i=1}^{N} |(\hat{y}(i) - \hat{y}_{t}(i)) \log(\hat{y}(i) / \hat{y}_{t}(i))| \quad L_{D}^{\text{adv}}(x, y) = \sum_{k=1}^{K} -\mathbb{E}_{x_{k}, y_{k}} \log[1 - D_{k}(x_{k}, y_{k})] \quad L_{E}^{\text{lat}}(x, y, \hat{y}) = ||z - \hat{z}||$ 

Table 3: Comparison between PASS and other performance baselines for retinal vessel segmentation.

- Pulmonary Segmentation: With PASS, we have a domain gap of only 1.32 when trained on MCU, 2.39 when trained on JSRT, and 0.44 when trained on CHN.
- The poorer performance of the PASS model without t(x) justifies its inclusion and the logit-wise distribution matching as the consistency regularization.

| Model               | Train on $\rightarrow$ | MCU   |       |       | JSRT  |       |       |       | CHN   |       |       |       |       |
|---------------------|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                     | Test on $\rightarrow$  | MCU   | JSRT  | CHN   | Avg   | MCU   | JSRT  | CHN   | Avg   | MCU   | JSRT  | CHN   | Avg   |
| U-Net               |                        | 97.67 | 39.39 | 94.48 | 77.18 | 92.00 | 95.02 | 90.54 | 92.58 | 93.72 | 43.46 | 95.84 | 77.67 |
| PU-Net              |                        | 97.89 | 21.24 | 97.84 | 72.33 | 84.97 | 94.94 | 73.68 | 84.53 | 93.57 | 73.88 | 95.90 | 87.78 |
| AttnU-Net           |                        | 97.86 | 30.31 | 94.07 | 74.08 | 6.70  | 94.95 | 65.00 | 55.55 | 81.25 | 74.24 | 95.56 | 83.68 |
| ProgU-Net           |                        | 97.83 | 10.98 | 91.32 | 66.71 | 34.89 | 95.20 | 86.28 | 72.12 | 84.79 | 60.03 | 95.35 | 80.06 |
| ProgU-NetSS         |                        | 97.90 | 33.98 | 95.32 | 75.33 | 13.16 | 95.09 | 65.00 | 57.75 | 94.24 | 67.29 | 95.63 | 85.72 |
| AU-Net              |                        | 97.86 | 94.68 | 95.08 | 95.87 | 89.12 | 97.85 | 92.46 | 93.14 | 95.58 | 95.88 | 96.22 | 95.89 |
| APPU-Net            |                        | 97.81 | 95.07 | 94.77 | 95.88 | 90.46 | 97.80 | 91.76 | 93.34 | 95.72 | 96.25 | 96.11 | 96.03 |
| CyUDA               |                        | 95.61 | 92.84 | _     | 94.23 | —     | _     | _     | _     | _     | _     | _     | _     |
| SeUDA               |                        | 95.61 | 94.51 | _     |       | —     | _     | _     | _     | _     | _     | _     |       |
| CoDAGAN             |                        | _     | _     | _     | _     | 84.58 | 96.45 | 88.99 | 90.01 | _     | _     | _     | _     |
| PASS without $t(x)$ |                        | 97.74 | 96.43 | 96.76 | 96.98 | 95.11 | 98.26 | 95.92 | 96.43 | 96.62 | 96.11 | 97.61 | 96.68 |
| PASS                |                        | 98.22 | 96.56 | 97.24 | 97.34 | 95.70 | 98.27 | 96.06 | 96.68 | 97.27 | 97.15 | 97.65 | 97.36 |

Table 4: Comparison between PASS and other performance baselines for pulmonary segmentation.

Conclusions



 $L_{S}^{\text{adv}}(x, \hat{y}) = \sum_{k=1}^{K} -\mathbb{E}_{x_{k}, \hat{y}_{k}} \log[1 - D_{k}(x_{k}, \hat{y}_{k})]$ 

#### Table 1: Learning objectives for the three networks in the proposed PASS model.

• PASS, an innovative semantic segmentation model mitigates the domain shift problem in learning from small annotated training datasets.

• Future work will focus on evaluating PASS on other image segmentation tasks as well as assessing its effectiveness in iterative and active learning settings.