

Exploiting Knowledge Embedded Soft Labels for Image Recognition

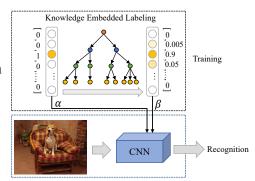
Lixian Yuan¹, Riquan Chen¹, Hefeng Wu^{1*}, Tianshui Chen², Wentao Wan¹, and Pei Chen¹ Sun Yat-sen University, Guangzhou, China ²DarkMatter AI Research, Guangzhou, China

Motivation

- Typical Image Recognition treats each class independently and the training labels are set as one-hot vectors.
- Ignores the correlations between different classes.

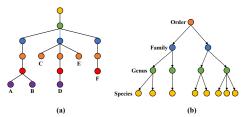
> Contributions

- We construct hierarchical knowledge graphs to reserve and explore the semantic relations across different classes.
- The knowledge embedded soft labels is generated based on the hierarchical knowledge graphs.
- The knowledge embedded soft labels serve as extra guidance during the training process.
- The experiment results show the effectiveness of our proposed method without changing the structure of the backbone network.



Proposed Method

➤ Hierarchical Knowledge Graphs



• We construct two possible hierarchical knowledge graphs by, (a) extracting a subnet from WordNet [23] for general image recognition or by, (b) manual categorization [9] based on biology taxonomy for fine-grained image recognition.

> Knowledge Embedded Soft Labels

• The distance between class i and i in a graph

$$d_{ij} = e_{ij} - 1 \ (e_{ij} \ge 2, \ i \ne j)$$

• The similarity coefficients between class i and j in a graph

$$c_{ij} = \lambda^{d_{ij}} \ (\ 0 < \lambda < 1, \ c_{ii} = 1\)$$

• The proposed knowledge embedded soft labels between class i and j in a graph

$$g_{ij} = \frac{exp(T \cdot c_{ij})}{\sum_{k=1}^{n} exp(T \cdot c_{ik})}$$

> Training Loss

$$y'_{ij} = \frac{exp(s_{ij})}{\sum_{k=1}^{n} exp(s_{ik})}$$

$$\mathcal{L}_{CE} = -\sum_{k} y_{ik} \cdot log(y'_{ik}) \qquad \mathcal{L}_{KL} = -\sum_{k} g'_{ik} \cdot log\frac{g_{ik}}{g'_{ik}}$$

$$\mathcal{L} = \alpha \cdot \mathcal{L}_{CE} + \beta \cdot \mathcal{L}_{KL}$$

Experiments

> Comparison with the state-of-the-art

Method	Accuracy	Network Backbone
Baseline	85.8	ResNet-50
DT-RAM [26]	86.0	ResNet-50
KERL [27]	86.3	VGG-16
MA-CNN [15]	86.5	VGG-19
KERL w/ bbox [27]	86.6	VGG-16
KERL w/ HR [27]	87.0	VGG-16
DPL-CNN [28]	87.1	ResNet-50
Ours	87.1	ResNet-50

• Comparison on the Caltech-UCSD Birds (CUB) [8] Dataset for fine-grained image recognition

Dataset	Baseline	Ours
Mini-ImageNet	78.4	81.0
Small-ImageNet	80.1	80.6

• Comparison on the Mini-ImageNet Dataset [25] and Small-ImageNet Dataset for general image recognition

Methods	Learning rate	Results	
Label Smoothing [22]	0.01	85.8	
Laber Sinoothing [22]	0.001	86.5	
Ours	0.1	87.1	
Ours	0.01	86.7	

 Comparison between our proposed method and Label Smoothing [22]

➤ Ablation Study

λ	T	α	β	Accuracy
-	-	1	0	85.8 (only \mathcal{L}_{CE})
0.5	16	0	1	85.4 (only \mathcal{L}_{KL})
	2	1	1	86.7
0.5	5	1	1	86.2
	16	1	1	85.8
0.5	16	1	1	85.8
0.5	16	0.1	1	86.5
	2	1	1	86.7
0.5	2	- 1	0.1	97.1

Network Backbones	Baselines (w/o KESL)	Ours (w/ KESL)
MobileNetV2	81.7	82.1
ResNet-18	82.6	83.3
ResNet-50	85.8	87.1

• Ablation study of different network backbones

· Ablation study of hyper-parameters