Novel View Synthesis from only a 6-DoF Camera Pose by Two-stage Networks
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novel views, we propose a novel paradigm to this
problem. That Is, we synthesize the novel view from
only a 6-DoF camera pose directly. Although this
setting Is the most straightforward way, there are few
works addressing it. While, our experiments
demonstrate that, with a concise CNN, we could get a
meaningful parametric model that could reconstruct
the correct scenery images only from the 6-DoF pose.

To this end, we propose atwo-stage learning strategy,
which consists of two -

consecutive CNNSs:
GenNet and RefineNet.
GenNet generates a
coarse Image from a
camera pose. RefineNet Is
a generative adversarial
network that refines the
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Overview of the whole pipeline. A two-stage network consist of GenNet and RefineNet.
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We use U-Net structure, following pix2pix. The loss
function includes L 1 norm, Perceptual Loss and
Adversarial Loss.
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TABLE 1
QUANTITATIVE EVALUATION OF THE SYNTHESIZED IMAGES QUALITY. THREE MEASURE METHODS WITH REFERENCE IMAGE: SSIM, PSNR, L1 NORM
AND ONE METHOD WITHOUT REFERENCE IMAGE: BRENNER. COARSE MEANS THE COARSE IMAGES GENERATED BY GENNET AND REFINED MEANS
REFINED IMAGE BY REFINENET WITH OR WITHOUT PERCEPTUAL L0OSS (PL).
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Examples of results on 7Scenes. For each scene, the first row contains synthesized
Images, and second row contains corresponding ground truth images
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The effect of RefineNet. The first row Is coarse

I Image and second row is refined image (L eft)
@ | he effect of Perceptual Loss. PL could help to
remove unrealistic artifact (top)

Conclusion

We propose a new problem configuration of NV S:
take only the camera pose as Input. A two-stage
framework consist of two consecutive networks:
GenNet and RefineNet Is used. Experiments snow
promising results In generating visually pleasant
Images. There are aso limitations: need to tran
network for each scene; distortion in results and
limited generalization ability.




