SAT-Net: Self-Attention and Temporal Fusion for Facial Action Unit Detection

Zhihua Li, Zheng Zhang, Lijun Yin Binghamton University

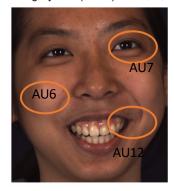
BINGHAMTON UNIVERSITY

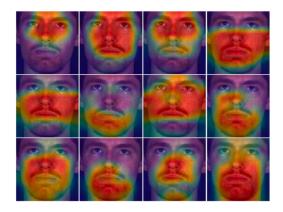
Intro to facial action units

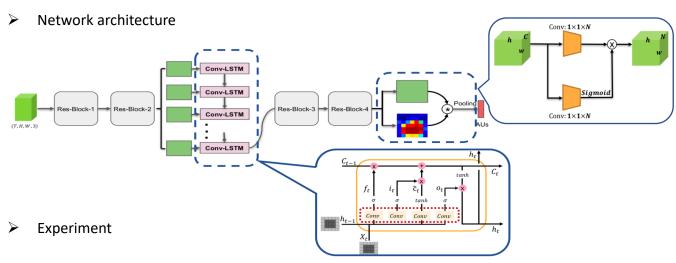
Attention maps

Facial action units (FAUs) are facial muscle actions at certain facial locations defined by Facial Action Coding System (FACS) Ekman, R. (1997)

AU index	Au Name
1	Inner Brow Raiser
2	Outer Brow Raiser
4	Brow Lowerer
6	Cheek Raiser
7	Lid Tightener
10	Upper Lip Raiser
12	Lip Corner Puller
14	Dimpler
15	Lip Corner Depressor
17	Chin Raiser
23	Lip Tightener
24	Lip Pressor







AU	JPML	DRML	CNN-LSTM	EAC	JAA	LP	$AR_{ConvLSTM}$	SRERL	ResNet	T-Net	SA-Net	SAT-Net
1	32.6	36.4	31.4	39.0	47.2	43.4	48.0	46.9	50.8	45.9	52.0	[54.1]
2	25.6	41.8	31.1	35.2	44.0	38.0	43.2	45.3	45.4	43.9	45.1	[49.5]
4	37.4	43.0	71.4	48.6	54.9	54.2	53.1	55.6	56.2	55.8	[60.0]	58.3
6	42.3	55.0	63.3	76.1	77.5	77.1	76.9	77.1	77.1	76.5	[78.0]	77.7
7	50.5	67.0	77.1	72.9	74.6	76.7	78.4	[78.4]	76.6	76.8	76.9	77.7
10	72.2	66.3	45.0	81.9	[84.0]	83.8	82.8	83.5	82.3	82.6	83.8	83.6
12	74.1	65.8	82.6	86.2	86.9	87.2	[87.9]	87.6	86.7	86.8	87.3	86.5
14	65.7	54.1	[72.9]	58.8	61.9	63.3	67.7	60.6	57.2	59.5	61.0	63.2
15	38.1	36.7	33.2	37.5	43.6	45.3	45.6	52.2	49.3	[53.0]	49.5	49.1
17	40.0	48.0	53.9	59.1	60.3	60.5	63.4	[63.9]	60.5	62.8	61.0	61.8
23	30.4	31.7	38.6	35.9	42.7	48.1	47.9	47.1	48.1	[50.0]	47.5	48.7
24	42.3	30.0	37.0	35.8	41.9	54.2	[56.4]	53.3	50.0	48.5	47.6	49.3
Avg	45.9	48.3	53.2	55.9	60.0	61.0	62.6	62.9	61.7	61.8	62.5	[63.3]

Table 1: Performance on BP4D

AU	LSVM	APL	DRML	EAC	JAA	$AR_{ConvLSTM}$	SRERL	ResNet	SA-Net	T-Net	SAT-Net
1	10.8	11.4	17.3	41.5	43.7	26.9	[45.7]	29.8	32.3	36.6	41.2
2	10.0	12.0	17.7	26.4	46.2	24.4	[47.8]	29.3	33.1	32.5	33.1
4	21.8	30.1	37.4	[66.4]	56.0	58.6	59.6	56.6	62.3	64.9	63.0
6	15.7	12.4	29.0	50.7	41.4	49.7	47.1	[57.3]	52.2	53.1	56.4
9	11.5	10.1	10.7	[80.5]	44.7	34.2	[45.6]	35.5	33.3	35.8	43.0
12	70.4	65.9	37.7	[89.3]	69.6	71.3	73.5	71.8	71.2	74	73.1
25	12.0	21.4	38.5	[88.9]	88.3	83.4	84.3	84.6	84.0	82.2	82.9
26	22.1	26.9	20.1	15.6	58.4	51.4	43.6	55.2	59.6	55.7	[60.6]
Avg	21.8	23.8	26.7	48.5	56.0	50.0	55.9	52.5	53.5	54.3	[56.7]

Table 2: Performance on DISFA

Conclusion

- Our network utilized the <u>least training</u> <u>parameters</u> but achieves the state-of-theart performance.
- Different from handcraft attention mechanism, we developed an AU label supervised self-learned attention module to enable the network to learn to pay more attention to different facial areas for the corresponding AUs
- We have also proposed to use <u>Conv-LSTM</u> <u>module</u> to fuse the temporal information into AU detection problems and proved to be feasible with temporal information as a supplement in facial action unit detection